Erosion & Sediment Control and

Stormwater Pollution Prevention Plan

Silo Ridge Resort Community Master Development

Prepared forSilo Ridge Ventures, LLC. 5021 US Route 44 Amenia, NY 12501 845-373-8020

Prepared ByVHB Engineering, Surveying and Landscape
Architecture P.C.
50 Main Street, Suite 360
White Plains, NY 10606
914-467-6600

April 2014

Revised August 2014

Amanda Catherine De Cesare, P.E.

New York License # 084690

Table of Contents

Intro	duction and Instruction to Owner/Operator	1
I Noti	ice of Intent (NOI) Form	3
II Co	ntractor Certifications and Designation Letters	4
III Pr	oject Figures	6
IV Pr	roject Description	7
	Site Location and Summary	7
	Existing Conditions	7
	Proposed Conditions	7
	Five Step Process for Stormwater Site Planning and Practices Selection.	8
	Hydrologic Analysis	13
	Water Quality & Runoff Reduction	14
	General Project Phasing	15
	Project Materials	20
	Non-Industrial Discharges	21
V Co	nstruction Schedule and Sequence	22
VI Re	equired Erosion and Sediment Control	23
	Erosion and Sediment Controls	23
VII A	dditional Erosion and Sediment Controls	27
VIII	Water Quality and Water Quantity Controls	28
	Water Quality Controls	28
	Water Quantity Controls	30
IX M	aintenance, Inspections and Project Documentation	31
	Inspections	31
	Maintenance	32
	Documentation	33
X Spi	ll Prevention Plan and Response Procedures	34
	Material Management Practices	34
	Product-Specific Practices	35
	Spill Control/Notification Practices	26

XI Notice of Termination Form	42
XII SPDES Permit & Fact Sheet	43
Attachments	
Attachment A – BMP Construction Inspection Checklist	A-1
Attachment B – BMP Maintenance Inspection Checklist	B-1
Attachment C – Site Plan Approval	
Attachment D – Soils Information	D-1
Attachment F – Drainage Drawings and Calculations	F-1

Introduction and Instruction to Owner/Operator

This Erosion and Sediment Control / Pollution Prevention Manual has been developed as a base for the Stormwater Pollution Prevention Plan (SWPPP) to be prepared by the Owner/Operator as required under New York's State Pollutant Discharge Elimination System (SPDES) Permit for Construction Activites (GP-0-10-001). This manual provides the following information, as required for the SWPPP by the SPDES Permit:

- > Site Description
- ➤ Development Description
- ➤ Drainage Characteristics
- ➤ Soil Characteristics
- ➤ Construction Phasing Information
- ➤ Pollution Prevention Practices
- ➤ Erosion and Sediment Control BMPs
- ➤ Operations and Maintenance Plans
- ➤ Grading, Drainage and Erosion Control Plans
- > SPDES Permit and Fact Sheet
- Notice of Intent (NOI) Form (to be finalized and Certified by the Owner/Operator)
- ➤ Notice of Termination (NOT) Form
- ➤ Inspection Forms, Monitoring and Reporting Requirements
- ➤ Contractor Certification Form

The SWPPP must be prepared prior to filing of the Notice of Intent (NOI). If the SWPPP conforms to the Department's technical standards and the activities will not discharge a pollutant of concern to an impaired water or a TMDL watershed, authorization to discharge under this permit may occur five (5) business days after the date on which the NOI is received by the Department. For activities which do not comply with the technical standards or for construction site activities subject to a TMDL, authorization to discharge begins no sooner than sixty (60) business days from receipt of the NOI by the DEC unless notified otherwise. NOI forms can be found on the NYS DEC website (http://www.dec.ny.gov/) and must be mailed to the NYSDEC Central Office in Albany (Division of Water, 625 Broadway, 4th Floor, Albany, NY 12233-3505).

In order to complete the pre-construction SWPPP, the Owner/Operator must complete the following:

- ➤ Certify that they have read and understand the terms of the SPDES Permit.
- ➤ Review this manual and update and/or revise as necessary.

- ➤ Update location and types of erosion and sediment control materials as required by the site.
- ➤ Include designation letters to authorize implementation of the SWPPP.
- ➤ Designate areas for stockpiles, sanitary facilities, dumpsters, wash-down, lay-down and construction trailers and appropriate erosion and sediment control features (these can be hand drawn on a copy of the site plan).
- ➤ Designate project contact person(s) and include contact information.

The SWPPP is a dynamic document, and must be continually updated by the Owner/Operator throughout construction. This manual does not comprise a complete SWPPP. It is the responsibility of the Owner/Operator to update this manual and perform the activities herein, including, but not limited to:

- ➤ Post a sign at the site construction entrance that includes a copy of the Notice of Intent and a brief description of the project, location of the SWPPP, and a person to contact should the public want to review the SWPPP.
- ➤ Perform inspections and maintenance as designated in this manual, and as required as the project phases change.
- ➤ Prepare and certify inspection reports and include reports in the SWPPP.
- Update plans, as necessary, to denote major site changes and/or changes in the site BMPs.
- ➤ Update Plans to reflect changes in stockpile, sanitary facility, lay-down and other site areas.
- Maintain schedule of dates of major earthwork, stabilization and/or erosion control installations.
- ➤ Document any spills.
- ➤ Document off-site sedimentation resulting from this construction.

The Owner/Operator completed SWPPP must be updated throughout construction, until a Notice of Termination (NOT) Form has been submitted to the DEC. From the date of submittal of the NOT form, the SWPPP documents must be maintained by the Site operator for a period of five years.

I

Notice of Intent (NOI) Form

The Department of Enivronmental Conservation must receive the completed NOI at least five (5) business days prior to the start of construction. VHB has supplied some of the information necessary for portions of this form. The remainder of the information must be completely filled out, reviewed, and submitted by the owner and construction site operator. The completed NOI Form must be certified and submitted by the owner/operator in order for it to take effect.

NOTICE OF INTENT

New York State Department of Environmental Conservation Division of Water

625 Broadway, 4th Floor

NYR					_
	(for	DEC	use	only)	

Albany, New York 12233-3505

Stormwater Discharges Associated with Construction Activity Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-10-001 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANTRETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM

							0		- / 0					·£														_	
							Own	ner	-/0	pe:	rat	cor	. Т	.nr	ori	nat	:10	n											
Owner/Operator				$\neg \neg$		\top		ce	-T			\neg				cip	al	ity	y N	Jam	e)								_
S i l o R	i d	9	е	7	V e	n	t	u	r	е	s	\perp	L	L	С														
Owner/Operator	Con	tac	t I	Per	son	. La	st	Na	.me	(1	TOV	. C	ON	SU	LTA	IU	')						 ı	I	ı				_
Torres	Ш			\perp			Ш																				Ш		
Owner/Operator	. Con	tac	t I	Per	son	Fi	rst	. N	ame	e _																			
Pedro																													
Owner/Operator Mailing Address 5 0 2 1 R o u t e 4 4																													
5 0 2 1 R o u t e 4 4 City																													
City																													
City A m e n i a																													
State	A m e n i a																												
NY	1 2	2 5	0	1	-																								
Phone (Owner/0)pera	tor	-)					Fa	x (Ow	ne:	r/(9 CI C	era	ıt.o	r)													
8 4 5 - 3 7	T	8		2	0						_				-														
			,								ı				J					J									
Email (Owner/O		Т		o r	n e	1	е	a	f	р	a	r	+	n	е	r	s		С	0	m								
ptorre	5 @				.1			a		니	a					_	ם	•			111								
FED TAX ID			_																										
1 3 - 4 1 3	9 5	9	9	(no	ot 1	ceq	uir	ed	fo	r	inc	div	/id	lua	ls)													

Project Site Information	tion
Project/Site Name S i l o R i d g e C o u n t r y C l u b	
Street Address (NOT P.O. BOX) 4 6 5 1 R o u t e 2 2	
Side of Street O North O South O East • West	
City/Town/Village (THAT ISSUES BUILDING PERMIT) A m e n i a	
State Zip County N Y 1 2 5 0 1 - D u t c h e s s	DEC Region 3
Name of Nearest Cross Street L a k e A m e n i a R o a d	
Distance to Nearest Cross Street (Feet)	Project In Relation to Cross Street North O South O East O West
Tax Map Numbers Section-Block-Parcel 7066-00	Tax Map Numbers 7 3 2 8 1 0 6 7 0 7 1 7

1. Provide the Geographic Coordinates for the project site in NYTM Units. To do this you $\underline{\text{must}}$ go to the NYSDEC Stormwater Interactive Map on the DEC website at:

www.dec.ny.gov/imsmaps/stormwater/viewer.htm

Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located your project site, go to the tool boxes on the top and choose "i"(identify). Then click on the center of your site and a new window containing the X, Y coordinates in UTM will pop up. Transcribe these coordinates into the boxes below. For problems with the interactive map use the help function.

X Coordinates (Easting)
6 1 8 5 3 2

Y C	loor	dina	ates	(N	orth	ning)
4	6	3	2	2	6	4	

- 2. What is the nature of this construction project?
 - New Construction
 - O Redevelopment with increase in impervious area
 - O Redevelopment with no increase in impervious area

SELECT ONLY ONE CHOICE FOR EACH	
Pre-Development Existing Land Use	Post-Development Future Land Use
○ FOREST	O SINGLE FAMILY HOME Number of Lots
O PASTURE/OPEN LAND	O SINGLE FAMILY SUBDIVISION
O CULTIVATED LAND	O TOWN HOME RESIDENTIAL
○ SINGLE FAMILY HOME	O MULTIFAMILY RESIDENTIAL
O SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL
○ TOWN HOME RESIDENTIAL	○ INDUSTRIAL
○ MULTIFAMILY RESIDENTIAL	○ COMMERCIAL
○ INSTITUTIONAL/SCHOOL	O MUNICIPAL
○ INDUSTRIAL	○ ROAD/HIGHWAY
○ COMMERCIAL	● RECREATIONAL/SPORTS FIELD
○ ROAD/HIGHWAY	○ BIKE PATH/TRAIL
● RECREATIONAL/SPORTS FIELD	○ LINEAR UTILITY (water, sewer, gas, etc.)
○ BIKE PATH/TRAIL	O PARKING LOT
○ LINEAR UTILITY	○ CLEARING/GRADING ONLY
O PARKING LOT	O DEMOLITION, NO REDEVELOPMENT
OTHER	O WELL DRILLING ACTIVITY *(Oil, Gas, etc.)
	OTHER
*Note: for gas well drilling, non-high volume	hydraulic fractured wells only
4. In accordance with the larger common plan of	
enter the total project site area; the total existing impervious area to be disturbed (f	
activities); and the future impervious area	constructed within the
disturbed area. (Round to the nearest tenth	of an acre.)
Total Site Total Area To Exist	ting Impervious Future Impervious
	To Be Disturbed Area
6 7 6 0 2 6 8 3	1 4 . 0 3 5 . 0
5. Do you plan to disturb more than 5 acres of	f soil at any one time? • Yes O No
6. Indicate the percentage of each Hydrologic	Soil Group(HSG) at the site.
A B	C D
2 9 % 5 %	2 9 % 3 7 %
7. Is this a phased project?	● Yes ○ No
Start Da	te End Date
8. Enter the planned start and end dates of the disturbance $\begin{bmatrix} 0 & 8 \end{bmatrix} / \begin{bmatrix} 0 & 8 \end{bmatrix}$	0 1 / 2 0 1 4 - 0 8 / 3 1 / 2 0 2 1
activities.	

3. Select the predominant land use for both pre and post development conditions.

		Iden				e ne	eai	res	st	su	rface	e wa	ate	erb	ody	(:	ies)	to	wh	ic	h	cor	ıst	cru	ıct	io	n s	sit	ce	ru	no:	££	wil	11		
Na	discharge. Name A m e n i a B r o o k																																			
A	Amenia Brook																																			
			Ť	Ť	T										Ť			Ť										İ		Ī	T		Ì		T	ī
	9a.	T	pe	of	Ē W	ate	erk	ood	ly	ide	entif	ied	l i	n (Que	st	cion	9?																		
																(A	nswe	er S	(d.																	
	Ŭ	Wetl												-			, -		0.																	
	_	Wetl																swer	. 9.	b)																
											dict	ion	ı O	ff	Si	te	<u> </u>																			
	Stream / Creek On SiteStream / Creek Off SiteRiver On Site																																			
	O River On Site																																			
	O River On Site 9b. How was the wetland identified?														>																					
	Ŭ	O River On Site O River Off Site O Lake On Site O Lake Off Site O Lake Off Site O Delineated by Consultant																																		
		O Stream / Creek Off Site O River On Site O River Off Site O Lake On Site O Lake On Site O Regulatory Map																																		
	Ŭ		River On Site River Off Site Lake On Site Cake Off Site Other Type On Site Phow was the wetland in the second of the second																																	
		River Off Site Lake On Site Cake Off Site Delineated by Consultation Other Type On Site 9b. How was the wetland id Regulatory Map O Delineated by Consultation O Delineated by Army Consultation														rp	S	of	Eng	gin	leei	îs														
	0	9b. How was the wetland identify Clake On Site Clake Off Site Clak															Т																			
		Ш				Ш														L																
	10.										body pendi									ee:	n :	ide	nt	if	ie	d a	as	а		(Y	es		No	>	
		3.	, , ,	α,		5				1-12-1	CIIG			_	<u> </u>	•	10 (, , ,																		
	11.										ted i		ne	: 0	f t	he	e Wat	cers	she	ds	i	den	ti	fi	ed	i	n			(Y	65		No	_	
		Al	ppe	ndi	LX	C c	Dİ	GE	2-0	-T(0-001	L?																				CS		140		
	12.	Ιs	s t	he	pr	oje	ect	:]	Loc	ate	ed ir	ı or	ie	of	th	e	wate	ersl	ned																	
		a	rea		ass						n AA																			(Y	es	•	No)	
						ip	qυ	ıes	sti	on	13.																									
	13.	Do	nes	tł	nis	CC	ons	str	ruc	tic	on ac	ctiv	rit	у (dis	tı	ırb I	Land	d w	it!	h 1	no														
		ez	αis	tir	ng	imp	per	ivî	Lou	s	cover F c	ar	nd	wh	ere	t	the S	Soil	L S	10	ре		as	e	is					(Y	es) No)	
											acrea									2 -																
																L																				
	14.										turb the									ia:	רבי	n+								() Y	ea		No	2	
			ea cea		Jeu	. w C	- L J	Lai	14	ΟŢ	CITE	PT C	,,,		cu	- (, U _ L (au	Ja	CCI	.16								,	⊥ ر	-13	•	~ 146		

15. Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)? • Yes	No Ounk	known
16. What is the name of the municipality/entity that owns the separate system? Note: Runoff that is entering the NYSDOT drainage system occ EXISTING & PROPOSED conditions. Runoff from proposed develop before discharging into the NYSDOT drainage system.	urs for	ВОТН
17. Does any runoff from the site enter a sewer classified as a Combined Sewer?	No Oun	known
18. Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law?	O Yes	• No
19. Is this property owned by a state authority, state agency, federal government or local government?	O Yes	● No
20. Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup Agreement, etc.)	○ Yes	• No
21. Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?	• Yes	O No
22. Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Quantity Control practices/techniques)? If No, skip questions 23 and 27-39.	• Yes	O No
23. Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS Stormwater Management Design Manual?	• Yes	O No

/ 2	24.		Th	.e	Sto	rn	nwa	ite	r 1	Pol	.lu	itio	on	Pr	ev	ent	cic	n	Pla	an	(S	WP	PP) W	as	pı	cep	ar	ed	by	7:							
	•	Pı	rof	es	sic	na	al	En	gi	nee	er	(P	.E	.)																								
	0	Sc	oil	. a	nd	Wa	ate	er	Co	nse	erv	at	ioı	ı D	is	tr	ict	= ((SW	CD)																	
	0	Re	egi	.st	ere	ed	La	and	sc	ape	e <i>I</i>	Arc.	hit	ec	:t	(R	.L.	.A))																			
	0	Ce	ert	if	ied	l	Pro	ofe	ss	ioı	na]	Li	n I	Erc	si	on	ar	nd	Se	di	mer	ıt	Co	ntı	rol	. (CPI	ESC	!)									
	0	Ov	wne	r/	Ope	era	ato	or																														
	0	Ot	the	r	_	_																_	_			_			_	_				_	_	7		
	SWPPP Preparer																																					
	SWPPP Preparer V H B E N G . , S U R V . & L A N D S C A P E A R C H . P C																																					
															\neg																							
LV	Contact Name (Last, Space, First)														\square																							
	V H B E N G . , S U R V . & L A N D S C A P E A R C H . P C Contact Name (Last, Space, First)														\neg																							
							е	′		А	III	a	11	a	a																							
					res:			C	_	70			_					_	_			2													П	\neg		\neg
5	0		M	a		n		S	t	r	е	е	t	′		S	u	i	t	е		3	6	0														
Cit		i	t	е		P	1	a	i	n	s																											
	ate		Zi					<u> </u>	_																													
N	Y		1	0	6	0	6	_																														
	one	l						J	_				J								Fax	ζ																
9	1	4	_	4	6	7	_	6	6	1	4										9	1	4	-	7	6	1	_	3	7	5	9						
Ema	ail											,																			!							
a	d	е	С	е	s	а	r	е	@	v	h	b	•	С	0	m																						
/																																	<u> </u>	 				_/

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-10-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

Fi	rst	- N	ſam	e											MΙ									
A	m	a	n	d	a										С									
La	st	Na	me																					
D	е	С	е	s	a	r	е																	
	Si	gna	tu	re										1										
															Da	te								
															0	4	/	0	9	/	2	0	1	4

25	•			cor ices								e s	scl	neo	du.	le	f	or	th	ie	pla	nr	ned	m	ana	ıger	ner	ıt				Y	?es		0 1	10	
26				t al yed										sed	din	men	ıt	CO	nt	ro	l p	ora	acti	ic	es	tha	at	wi	11	. be	9						
			3	[em]	po	rar	Ϋ́	St	ru	.ct	ur	al	_									Ve	ege	ŧ	at:	ive)	lea	as	ur	es	3					
			○ Cl	eck	D	ams															O E	3r	ush	·	lati	in	g										
			● Co	nst	ru	cti	on I	Ro	ad	Sta	ab	ili	.za	ti	.or	1					\bigcirc I	Du	ne	St	ab:	ili	zat	io	n								
			Dı	ıst	Co	ntr	ol														\bigcirc 0	3r	ass	eċ	l Wa	ate	rwa	аy									
			○ Ea	rth	D	ike															• 1	¶u.	lch	ir	ıg												
			○ Le	vel	S	pre	ade:	r													•	?r	ote	ct	ing	y V	ege	eta	t:	ion							
			O Pe	rim	et	er 1	Dik	e/	Swa	le											• F	Re	cre	at	ioi	n A	rea	a I	mj	pro	ve	eme	ent				
			O Pi	.pe	sl	ope	Dr	ai	n												• 5	3e	edi	ng	J												
																		\circ	50	ddi	ng	J															
			O Rock Dam														\circ	St:	raw	/I	Iay	Ва	le	Di	ke	Э											
			• Sediment Basin														• 5	St:	rea	mk	anl	c P	rot	cec	t:	ion											
			-														• 1	ľei	mpo:	ra	ıry	Sw	ale	9													
			• si	.lt	Fe	nce															• 1	ľo:	pso	il	ing	3											
			● St	abi	li	zed	Co	ns	tru	ıct:	Lo	n E	nt	ra	nc	e					\circ	/e	get	at	ing	g W	ate	erw	a	ys							
			● st	orm	D	rai	n I	nl	et	Pro	ot	ect	io	n								Pe	erm	na	nei	nt	St	ru	10	tu	ra	al					
			● st	raw	/H	ay 1	Bal	e :	Dik	:e													_										-				
			○ T €	oqm	ra	ry 2	Acc	es	s W	ate	er	way	, C	rc	ss	ing	g				_		bri			sin											
			○ T €	empo	ra	ry :	Sto	rm	dra	in	D	ive	ers	ic	n						Ŭ -	_	ver														
			● Te	empo	ra	ry :	Swa	le													_	_	ade					ati	.01	n S	tr	cuc	ctu	re			
			O Tı	ırbi	di	ty (Cur	ta	in												• 1	La	nd (Gr	ad:	ing											
			○ Wa	ter	b	ars																	ned														
																						?a	ved		!haı	nne	1	(Co	no	cre	te)					
			E	iot	e	chn	ica	<u> 1</u>														?a	ved	F	'lur	ne											
			○в	rust	1 N	ſatt	ing	J															tai														
			\circ w	att]	Lir	ıg															O F	Ri	pra	р	slo	pe	Pı	rot	e	cti	on	1					
																					• F	20	ck (Οü	ıtle	et	Pro	ote	ct	tio	n						
	Otl	ner																			\circ	3t:	rea	mk	anl	c P	rot	cec	t:	ion							
		<u>her</u>																																			
					$^+$											T	T		T	<u> </u>	+	$^+$	$\frac{}{}$	$\frac{\perp}{1}$	+		+	 	T		Ť		_				

Post-construction Stormwater Management Practice (SMP) Requirements

Important: Completion of Questions 27-39 is not required
 if response to Question 22 is No.

- 27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
 - Preservation of Undisturbed Areas
 - Preservation of Buffers
 - Reduction of Clearing and Grading
 - O Locating Development in Less Sensitive Areas
 - Roadway Reduction
 - O Sidewalk Reduction
 - O Driveway Reduction
 - O Cul-de-sac Reduction
 - O Building Footprint Reduction
 - O Parking Reduction
- 27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).
 - All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
 - O Compacted areas were considered as impervious cover when calculating the **WQv Required**, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
- 28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Total WQv Required

3 3 . 9 2 6 acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to $\underline{\text{reduce}}$ the Total WQv Required(#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

Table 1 - Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

					butı	ng	_		tal				_		_
RR Techniques (Area Reduction)	_	Are	a (a	acr	es)		<u> </u>	mpe	rvic	ous	Aı	:ea	ı(a	cre	es)
● Conservation of Natural Areas (RR-1)	. 4	6	4	. 0)		and/d	or _							
Sheetflow to Riparian Buffers/Filters Strips (RR-2)	•		5	. 6	6		and/o	or							
○ Tree Planting/Tree Pit (RR-3)				-			and/d	or_			•				
O Disconnection of Rooftop Runoff (RR-4)				•			and/d	or			•				
RR Techniques (Volume Reduction)											Г				
○ Vegetated Swale (RR-5) ······	• • • •	• • •	• • •	• •	• • • • •	• • •	• • • •		_		•				
○ Rain Garden (RR-6) ·····		• • •	• • •	• • •	• • • •	• • •	• • • •	•	4						
○ Stormwater Planter (RR-7)	• • • •	• • • •	• • •	• • •	• • • •	• • •	• • • •								
○ Rain Barrel/Cistern (RR-8)	• • • •		• • •	• • •	• • • •	• • •			\perp						
○ Porous Pavement (RR-9)	• • • •		• • •		• • • •	• • •									
○ Green Roof (RR-10)				• • •	• • • •	• • •									
Standard SMPs with RRv Capacity															
○ Infiltration Trench (I-1) ······	• • • •		• • •		• • • •		• • • •		\perp						
○ Infiltration Basin (I-2) ······									\perp						
○ Dry Well (I-3) · · · · · · · · · · · · · · · · · · ·															
○ Underground Infiltration System (I-4)						• • •									
○ Bioretention (F-5)							• • • •								
○ Dry Swale (0-1) ······	• • • •	• • •	• • •	• • •	• • • •	• • •	• • • •				•				
Standard SMPs															
○ Micropool Extended Detention (P-1)	• • •		• • •	• • •	• • • •	• • •			\bot		•	_			
○ Wet Pond (P-2)······	• • • •		• • •	• • •			• • • • •		_						
● Wet Extended Detention (P-3) ······	• • • •		• • •	• • •	• • • •	• • •	• • • •		1	4	•	6	1	4	ac-ft
○ Multiple Pond System (P-4) ······	• • • •		• • •				• • • • •		\perp						
O Pocket Pond (P-5) ······	• • • •		• • •	• • •		• •									
○ Surface Sand Filter (F-1) ······	• • • •		• • •	• • •	• • • •	• • •		•							
● Underground Sand Filter (F-2) ······				• •	• • • •		• • • •			1		2	6		ac-ft
○ Perimeter Sand Filter (F-3) ······	• • • •		• • •	• • •	• • • • •	• • •			\perp						
Organic Filter (F-4)					• • • • •										
○ Shallow Wetland (W-1)				• • •	• • • •	• • •	• • • •		\perp						
○ Extended Detention Wetland (W-2)					• • • •	• • •	• • • •								
○ Pond/Wetland System (W-3)															
O Pocket Wetland (W-4)															
○ Wet Swale (0-2)															

Table 2 -Alternative SMPs (DO NOT INCLUDE PRACTICES BEING USED FOR PRETREATMENT ONLY) Total Contributing Alternative SMP Impervious Area(acres) ○ Hydrodynamic \bigcirc Wet Vault O Media Filter Other Provide the name and manufacturer of the Alternative SMPs (i.e. proprietary practice(s)) being used for WQv treatment. Name Manufacturer Note: Redevelopment projects which do not use RR techniques, shall use questions 28, 29, 33 and 33a to provide SMPs used, total WQv required and total WQv provided for the project. 30. Indicate the Total RRv provided by the RR techniques (Area/Volume Reduction) and Standard SMPs with RRv capacity identified in question 29. Total RRv provided 2 4 0 5 6 acre-feet 31. Is the Total RRv provided (#30) greater than or equal to the total WQv required (#28). O Yes No If Yes, go to question 36. If No, go to question 32. 32. Provide the Minimum RRv required based on HSG. [Minimum RRv Required = (P)(0.95)(Ai)/12, Ai=(S)(Aic)] Minimum RRv Required 1 2 6 acre-feet 32a. Is the Total RRv provided (#30) greater than or equal to the Yes Minimum RRv Required (#32)? If Yes, go to question 33. If No, the sizing criteria has not been met. Contact Regional Office stormwater contact person to discuss next steps. Note: Use the space provided in question #39 to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). A detailed evaluation of the specific site limitations and justification for not reducing 100% of the WQv required (#28) must also be included in the SWPPP.

Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv(=Total WQv Required in 28 - Total RRv Provided in 30).

Also, provide in Table 1 and 2 the total impervious area that contributes runoff to each practice selected.

Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question 29.

WQv Provided

4 acre-feet 5 8 | 7

Note: For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - RRv provided by the practice. (See Table 3.5 in Design Manual)

34. Provide the sum of the Total RRv provided (#30) and the WQv provided (#33a).

Is the sum of the RRv provided (#30) and the WQv provided 35. (#33a) greater than or equal to the total WQv required (#28)? Yes

If Yes, go to question 36. If No, the sizing criteria has not been met. Contact Regional Office stormwater contact person to discuss next steps.

36. Provide the total Channel Protection Storage Volume (CPv) required and provided or select waiver (36a), if applicable.

*CPv is waived

proposed conditions,

because under

there is NO

increase in

for the 1-yr

peak flows

CPv Required 0 acre-feet

0 acre-feet

CPv Provided

36a. The need to provide channel protection has been waived because:

- O Site discharges directly to tidal waters or a fifth order or larger stream.
- O Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.

or 100-yr 37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or storm events select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp)

Pre-Development 7

5

5

1 1

Post-development

Total Extreme Flood Control Criteria (Qf)

Pre-Development

Post-development 9 6 3 CFS

37a.	7a. The need to meet the Qp and Qf criteria has been waived because:									
	○ Site discharges directly to tidal waters									
	or a fifth order or larger stream.									
	○ Downstream analysis reveals that the Qp and Qf controls are not required									
38.	Has a long	term Operat	tion and Mai	intenance	Plan fo	or the				
30.		ruction stor					lacktriangle Yes $igcirc$ No			
	developed?									
		entify the e		onsible f	or the l	long term				
	Operation a	and Maintena	ance							
	S i 1 o	R i d g e	e Ven	t u r e	s L	L C				
39.	Use this s	pace to summ	marize the s	specific	site lir	mitations a	and justification			
	for not red	ducing 100%	of WQv requ	uired(#28	3). (See	question 3	32a)			
	This space	can also be	e used for d	other per	tinent p	project inf	formation.			

8867147113

project/facility.

40.

	O Air Pollution Control		
	○ Coastal Erosion		
	○ Hazardous Waste		
	○ Long Island Wells		
	○ Mined Land Reclamation		
	● Solid Waste		
	● Navigable Waters Protection / Article 15		
	○ Water Quality Certificate		
	○ Dam Safety		
	● Water Supply		
	○ Freshwater Wetlands/Article 24		
	○ Tidal Wetlands		
	○ Wild, Scenic and Recreational Rivers		
	Stream Bed or Bank Protection / Article 15		
	○ Endangered or Threatened Species(Incidental Take Permit)		
	○ Individual SPDES		
	O SPDES Multi-Sector GP N Y R		
	Other Army Corps Nationwide		
	○ None		
41.	Does this project require a US Army Corps of Engineers Wetland Permit? If Yes, Indicate Size of Impact. 1. 3	• Yes	○ No
42.	Is this project subject to the requirements of a regulated, traditional land use control MS4? (If No, skip question 43)	O Yes	• No
43.	Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI?	O Yes	○ No
44.	If this NOI is being submitted for the purpose of continuing or trans	ferring	

Identify other DEC permits, existing and new, that are required for this

activities, please indicate the former SPDES number assigned. N Y R 1 0 X 8 6 7

coverage under a general permit for stormwater runoff from construction

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Print First Name	MI
P e d r o	
Print Last Name	
Torres	
Owner/Operator Signature	
	Date
	0 4 / 1 0 / 2 0 1 4

II

Contractor Certifications and Designation Letters

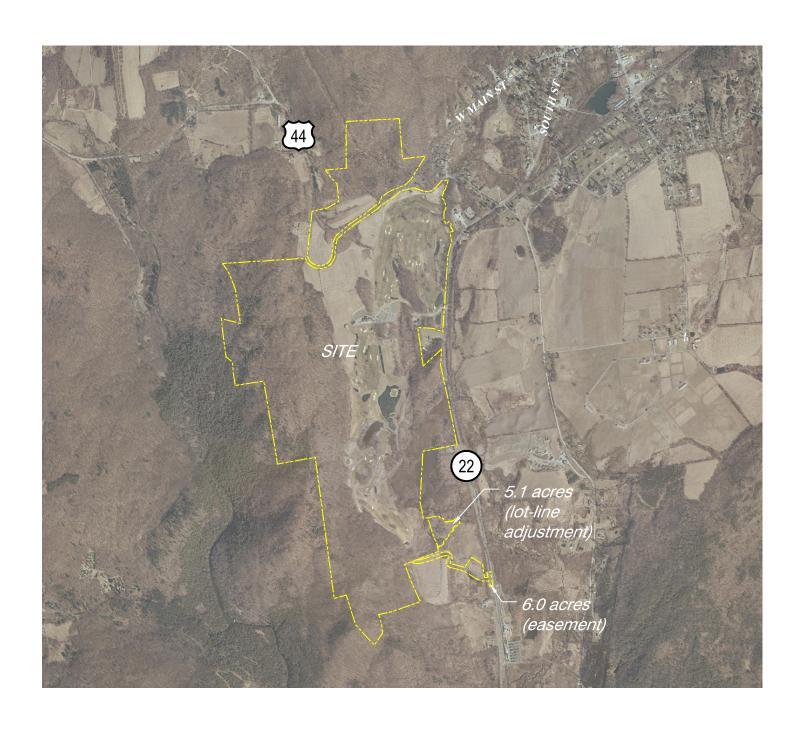
It is a requirement of the SPDES Permit that all those implementing the SWPPP certify that they have read and understand the permit. Certification Forms are included in this manual.

In addition, those implementing the SWPPP must be certified as designees of the contract firm's owner as described in Part III, Subsection A of the SPDES Permit. A copy of the New York State SPDES Permit GP-0-10-001 is included in Section XII of this manual.

CERTIFICATION OF PROJECT CONSTRUCTION CONTRACTORS

Silo Ridge 4651 US Route 22 Amenia, NY 12501

The following certification shall be signed by each contractor and subcontractor responsible for on-site activities, or any other subcontractor who will perform any action that may reasonably be expected to cause or have the potential to cause pollution of the waters of New York.


"I hereby certify that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the owner or operator must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings."

Owner/Operator	Contractor	Subcontractor
Signature and Date	Signature and Date	Signature and Date
Title	Title	Title
Company and Address	Company and Address	Company and Address
Subcontractor	Subcontractor	Subcontractor
Signature and Date	Signature and Date	Signature and Date
Title	Title	Title
Company and Address	Company and Address	Company and Address

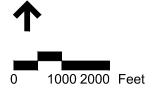
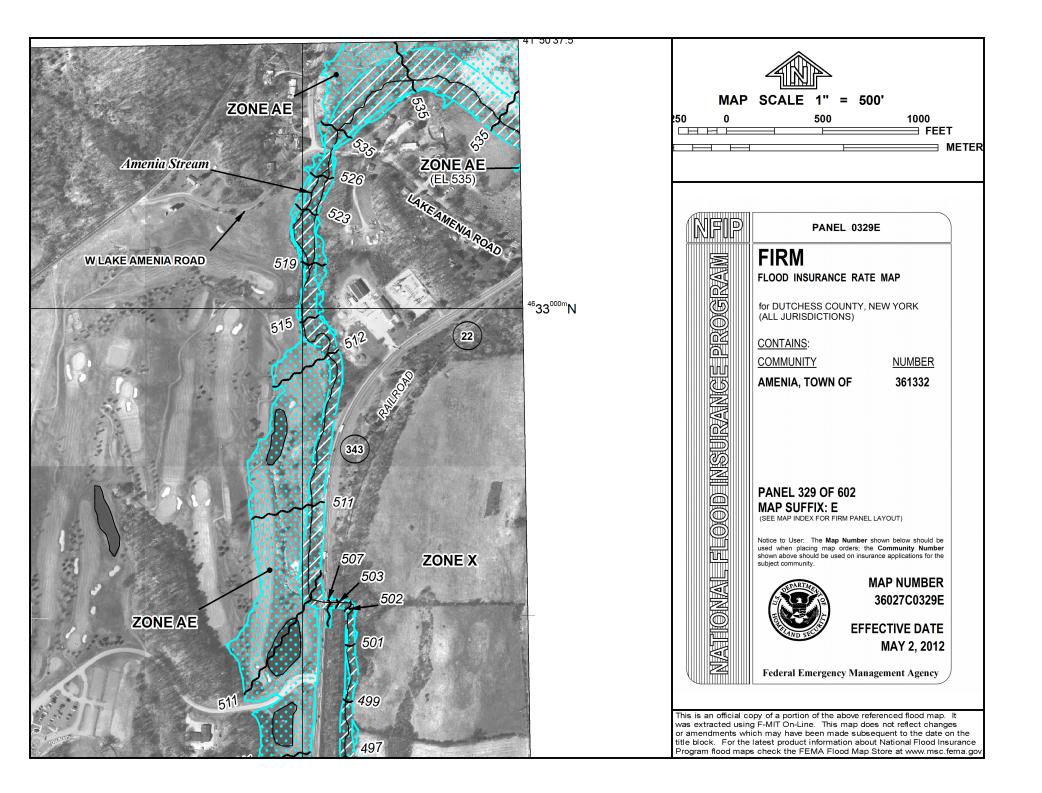
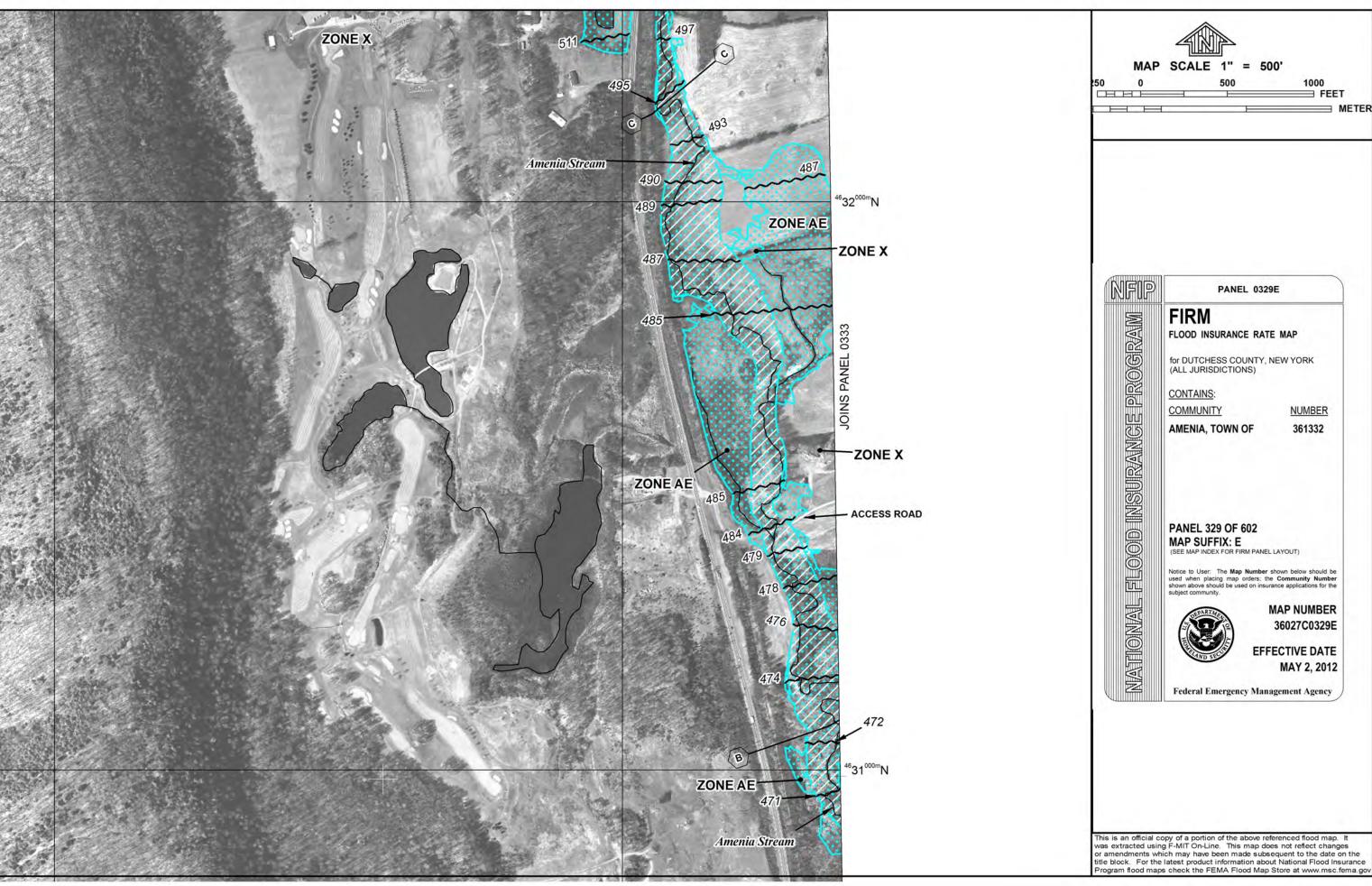

III Project Figures

Figure 1. Site Location Map


Figure 2. FEMA Floodplain Map



Vanasse Hangen Brustlin, Inc.

Site Location Map Silo Ridge Resort Community 4651 Route 22 Amenia, New York 12501

Site Location and Summary

The 676 +/- acre (682.5 +/- acres including the 6.6 +/- acre easement area on the adjoining property owned by Harlem Valley Landfill Corp.) project site is located in Town of Amenia, Dutchess County, NY, with a contributing drainage area of 849 +/- acres. The site is bounded to the West and South by Wassaic Creek, the East by Route 22, and the North by Lake Amenia Road and tributary to Amenia Stream. The project is not located within a TMDL watershed nor does it discharge into a 303(d) listed waterbody. The site location is shown on Figures 1 and 2.

Existing Conditions

Currently, the project site consist majority of existing golf course and wooded area. It also consists of a club house, parking lot and few existing ponds and wetlands. In general, the site rainfall runoff drains eastward to existing wetland and Amenia Stream along the Route 22.

According to the Flood Insurance Rate Map (FIRM) prepared by Federal Emergency Management Agency (FEMA) includes as Figure 2, a portion of the project site is located within the 100-year floodplain. [FIRM map number 36027C0329E, effective date May 2, 2012]

According to the NRCS soil survey for Dutchess County, NY, the majority hydrology soil groups for the site are hydrology soil group A, C and D. Soil boring logs, test pit locations, and an NRCS soils information are included in Appendix D.

Proposed Conditions

The proposed development consists of three phases of construction and are shown in the master development plan.

Phase I constructions include:

•Main Entry and Gatehouse

- •Sales office, Design Center and General Store
- Artisan Park Overlook
- Golf Course Renovations
- South Entry Access and Golf Maintenance Facility
- Village Green Lodging Unit, Condos
- •Club Building, Fitness and Pool
- Activity Barn and Lake Pavilion
- •Single Family Homes
- •Roads and Utilities
- Wastewater Treatment Plant and Conveyance
- •Water Treatment Facilities, Storage and Distribution
- •Drainage Piping Network and Stormwater Management Features

Phase II constructions include:

- •Club with Lodging Units
- •Balance of Single Family Homes
- •Roads and Utilities
- Drainage Piping Network and Stormwater Management Features

Phase III constructions include:

- Vineyard Cottages
- Winery Restaurant
- •Roads and Utilities
- •Drainage Piping Network and Stormwater Management Features

The total disturbance area of the development is 263.8 acres.

Runoff from the site is conveyed through the proposed drainage system to the proposed detention basins before discharging out of the site. The proposed detention basins serve as the water quality and water quantity control measures.

Five Step Process for Stormwater Site Planning and Practices Selection

The NYS Stormwater Management Design Manual (SMDM) required a five-step process that integrates site planning, usage of green infrastructure practices and standard stormwater management practices to treat stormwater. The five steps process are:

- 1. Site Planning to preserve natural area and reduce impervious cover,
- 2. Calculate initial required Water Quality Volume for the site,
- Provide Runoff Reduction by incorporating green infrastructure technique and standard stormwater management practice (SMP) with Runoff Reduction Volume (RRv) capacity,
- 4. Provide standard SMP's to treat remaining portion of water quality volume (WQv) not addressed by green infrastructure and standard SMP's with RRv capacity, and
- 5. Provide volume and peak rate control practices where required.

Following further discuss each of the five steps process in details.

Step 1: Site Planning

During site planning process, the designer try to conserve natural resources and reduce proposed impervious coverage to reduce the impact of water quality from proposed development.

Preservation of Natural Resources includes:

- Preservation of undisturbed areas
- Preservation of buffer areas
- Minimizing site clearing and grading
- Avoiding sensitive area
- Open space design

Reduction of impervious coverage includes:

- · Roadway reduction
- · Sidewalk reduction
- · Driveway reduction
- Cul-de-sac reduction
- Building footprint reduction
- Parking reduction

Step 2: Required Water Quality Volume (WQv)

Required WQv was calculated for the site based on Chapter 10 of SWDM – Enhanced Phosphorus Removal Standard (East of Hudson Standard) as per agreement with the Town although the site is not located within the East of Hudson Watershed. One-year rainfall of 2.8 inches was used for the WQv calculation. Weighted CN value was calculated based on the proposed development. Refer to attachment E3 for detailed calculation (WQv and RRv Analysis).

Step 3: Runoff Reduction Volume (RRv)

RRv requirement can be achieved through application of green infrastructure and standard SWM with runoff reduction capacity. If RRv provided by these techniques is greater than the required WQv, the RRv requirement is met. However if the RRv is less than the required WQv, the designer must at a minimum, reduce a percentage of the runoff from impervious areas to be constructed on site. The percent reduction is based on the Hydrologic Soil Groups present on the site, and is determined by the Specific Reduction Factor (S). The Specific Reduction Factor (S) used for this site is assumed to be 0.55 based on hydrologic soil group A to be conservative. Refer to attachment E3 for detailed calculations (WQv and RRv Analysis). Below are the list of green infrastructure techniques and standard SMP with runoff reduction capacity and an evaluation of its use for this project.

Conservation of Natural Area

Conserving the natural area can avoid the unnecessary disturbance of the natural soil and maintain the water quality. The project preserves most of the natural area throughout the perimeter of the property totaling approximately 464± acres. Most of the preserved areas are wooded area. Refer to Figure E3 (Water Quality Map) in appendix E3 for conservation area boundary. Conservation area is used for calculating the runoff reduction volume. Also, to meet the requirements of the RDO District, the project proposes to maintain at a minimum 80% of the site as Open Space; the proposed plan preserves 541.8± acres as Open Space within conservation easements.

Additionally, the project proposes restoration of the stream connecting to and the floodplain adjacent to the Amenia Cascade brook, as well as stream restoration of Wetland P located near the Estate Homes.

Sheetflow to Riparian Buffers / Filter Strips

The 100-foot buffer around the NYSDEC wetland is the ideal green infrastructure technique which falls under this category. The riparian buffer area on site that is used for runoff reduction volume calculation is shown on Figure E3 as mentioned above. The riparian buffer area hatch on Figure E3 will sheet flow toward the 100-foot buffer before entering the wetland.

Additionally as part of the project's extensive Habitat Management Plan (HMP), the project proposes interior buffering of the wetlands (both constructed and natural) and stormwater management practices. These proposed buffers were not used to calculate the proposed RRv, but do pose a significant improvement to water quality. The project proposes to increase buffers greater than 30' in width along aquatic edges from $81\% \pm$ to $100\% \pm$ to the existing natural sensitive habitats. Of note, the Amenia Cascade Brook buffer increases from 46% to 98% and the buffer along Wetland J increases from $41\% \pm$ to $90\% \pm$.

Vegetated Open Swales

RRv is not applied for this green infrastructure technique due to the site topography constrain that prevent the required design flows and exceeding the slope requirement of 4 percent. However, where the existing or proposed topography allows, the design has sited vegetated open swales to enhance the project's stormwater management and water quality. These swales are not included in the project's RRv calculation.

Tree Planting/Tree Box

RRv is not applied for this green infrastructure technique.

However, there are many natural trees that are being preserved throughout the site as well as an extensive landscape plan being reviewed by the Town of Amenia's Environmental Consultant. The landscape plan proposes many trees on slopes less than 5%. These trees are not included in the project's RRv calculation.

Disconnection of Rooftop Runoff

RRv is not applied for this green infrastructure technique due to the siting of buildings located on undesired soil HSG groups C and D.

However, when practical, it will be encouraged by the Home Owner's Association for rooftop leaders to be directed to rain gardens. This credit is not included in the project's RRv calculation.

Stream Daylighting

RRv is not applied for this green infrastructure technique because this project is not considered as a redevelopment project.

However, the project does propose to daylight a portion of Stream "N/P" located in the southwestern portion of the site. This credit is not included in the project's RRv calculation.

Rain Garden

RRv is not applied for this green infrastructure technique. The contributing drainage area for individual building exceeds the maximum contributing area of 1,000± sf (for a rain garden). However, when practical it will be encouraged by the Home Owner's Association for rooftop leaders to be directed to rain gardens. This credit is not included in the project's RRv calculation.

Green Roof

RRv is not applied for this green infrastructure technique because the design and architecture of the proposed buildings is not consistent with that of green roofs.

Stormwater Planters

RRv is not applied for this green infrastructure technique because stormwater planters are typically suitable for urban redevelopment site which is not the case for this project site.

Rain Tanks/Cisterns

There are no traditional rain tanks/Cisterns proposed for this project.

However, the proposed irrigation pond is designed as a traditional stormwater management practice (SWM#3), with a static water elevation and capability to store the runoff and attenuate the larger storm events. Nevertheless, this is not applied to the RRv because of the uncertainty of how the calculation would applied because the pond will function for attenuation and storage device for re-use.

Additionally, it will be encouraged by the Home Owner's Association to use rain tanks as part of the individual lot stormwater management design. These rain tanks are not included in the project's RRv calculation.

Porous Pavement

RRv is not applied for this green infrastructure technique.

However, there are specific areas that will use a porous pavement and/or a permeable paver, such as the overflow parking area. No credit is included in the project's RRv calculation for this technique.

Step 4: Water Quality Volume by Standard Stormwater Management Practice

Any remaining required water quality volume that is not being reduced by applying the green infrastructure will be treated by standard stormwater management practices. Following are the standard stormwater management practices applied to the project. Refer to attachment E3 for details calculations.

Underground Sand Filter

Underground sand filter is an filtering practice that treats, capture and temporarily store the stormwater as it flows through a filter bed of sand. There are total of six proposed underground sand filters. Two underground sand filters will be constructed during each of the three phases. Proposed underground sand filter are label as SWM #9 & SWM #12 (for Phase I), SWM #15 & SWM #16 (for Phase II) and SWM #13 & SWM #14 (for Phase III) in the Figure SW-1 Overall Stormwater Management Practice Identification Plan in MDP drawing set. Refer to attachment E3 for details calculations.

Wet Extended Detention Pond

Forebay, permanent pool and extended detention of the pond provides water quality volume. Forebays are sized to contain 10% of the water quality volume, and shall be four to six feet deep. Combined forebay and permanent pool are sized to contain 50% of the water quality volume. The remaining 50% of the water quality volume will be store at the extended detention. Proposed wet extended pond with water quality storage capability are labeled as SWM #1, SWM #2, SWM #5, SWM #6 in Figure SW-1 Overall Stormwater Management Practice Identification Plan in MDP drawing set. Refer to attachment E3 for details calculations.

Step 5: Volume and Peak Rate Control Practices

After satisfying the required water quality volume, designer need to satisfy the channel protection volume (CPv), overbank flood control and extreme flood control. Design criteria for channel protection volume, overbank flood control and extreme flood control are 1-year storm, 10-year storm and 100-year storm respectively.

After consulting with NYSDEC, the CPv requirement can be waived if there is no increase in peak discharge rate for the 1-year storm under proposed condition. In addition to that, the

design criteria for water quality volume is based on 1-year storm therefore it will satisfy the CPv.

Overbank flood control and extreme flood control requirement is satisfied though utilizing wet extended detention pond/dry detention basin and underground detention pipe system.

All of the practices have outlet control device consists of orifices and or weir to control the proposed 10-year and 100-year peak discharge rate to be less than existing condition.

Those practices are label as SWM #2 , SWM 3#, SWM #4, SWM #5, SWM #6, SWM #7, SWM #8 (detention pond/basin) and SWM #10 (underground detention pipe) in Figure SW-1-Overall Stowmwater Management Practice Identification Plan in MDP drawing set. Refer to HydroCAD output in appendix E2 for details analysis.

Hydrologic Analysis

The proposed site generally maintains the drainage pattern as close to existing conditions as possible. Study Points A, B, C and D as indicated on the attached drainage maps (Appendix E), were utilized to evaluate site runoff under pre- and post-development conditions.

All drainage area delineations for existing and proposed conditions are indicated on Existing and Proposed Drainage Maps provided in the Appendix E.

Times of concentration were calculated under existing and proposed conditions by following TR-55 Handbook Guideline. Flows were established for existing and developed conditions utilizing the SCS Method.

The hydrograph calculations and summations were prepared using the HydroCAD software. To establish these flows the 1-, 5-, 10-, 25- and 100-year, 24-hour storm precipitation values that were provided in the software were used.

The analysis indicates that the proposed conditions peak flows at all study points A B, C and D are less than the existing peak flows for all storms ranging from the 1-year to the 100-year design frequencies.

Refer to Summary Tables #1 and #2 for a comparison of flows produced under existing and developed conditions.

Refer to Appendix E for supporting calculations for the hydrologic analysis for both existing and proposed conditions.

Table day – Existing Conditions Peak Flows

Peak Discharges (cfs) of Various Storm Frequency							
Study Point	Area (AC)	1-yr	5-yr	10-yr	25-yr	100-yr	
A	249.16	17.71	77.00	109.45	164.66	292.28	
В	462.9	20.44	111.01	151.2	263.57	636.55	
С	70.89	0.02	1.81	4.09	11.17	33.26	
D	6.5	2.93	9.04	11.01	15.05	23.35	

Table 2 – Proposed Conditions Peak Flows

Peak Discharges (cfs) of Various Storm Frequency						
Study Point	Area (AC)	1-yr	5-yr	10-yr	25-yr	100-yr
A	251.72	16.57	68.64	86.82	128.82	239.79
В	462.77	16.14	104.98	149.46	253.26	475.08
С	68.36	0.02	1.78	3.97	10.70	31.13
D	6.6	2.93	8.99	10.92	14.88	23.35

There is NO INCREASE in peak discharge for the all storm events up to the 100- year storm under proposed conditions.

Water Quality & Runoff Reduction

The proposed site utilized infiltration basins during golf phase for water quality control. As per NYSDEC requirement, WQv of these infiltration basins (for the golf phase) are designed according to the 90% rule not East of Hudson Standard. Only infiltration basin E that will be utilized to receive runoff from the full built development are sized such that it will still satisfy the WQv requirement under East of Hudson standard.

Some of these infiltration basins that are constructed during the golf phase will be eliminated during the full built development. Figure SW-1 (Overall Stormwater Management Practice Identification Plan" that is part of the MDP drawing set shows the infiltration basins that will be remained under full built conditions.

Under full built conditions, wet extended detention ponds and underground sand filters are proposed to provide WQv to meet the East of Hudson standard. The WQv provided for the full built condition are self-satisfied by these proposed ponds and underground sand filters even without considering the WQv contributed by these remaining infiltration basin from golf phase.

In fact the total WQv provided are much more than the required WQv. Therefore the WQv provided by any of these infiltration basins is a bonus to the full built condition. Refer to appendix E3 for details water quality calculations.

Note: RRv and WQv provided by the infiltration basins that will be constructed during golf phase are not being considered in the RRv and WQv analysis under full built conditions. This approach provide a more conservative and simple analysis.

Below are the summary of the Runoff Reduction Volume (RRv) & Water Quality Volume (WQv) analysis for full-built condition. Refer to appendix E3 for the details RRv and WQv analysis.

Required Water Quality Volume (WQv) = 33.926 ac-ft With a Minimum Required Runoff Reduction Volume (RRv) based on HSG = 6.12 ac-ft

Total RRv Provided = 24.056 ac-ft <u>Total WQv Provided = 15.874 ac-ft</u> Total RRv + WQv Provided = **39.93 ac-ft**

Total RRv + WQv Provided = 39.93 ac-ft and is greater than WQv required of 33.926 ac-ft

General Project Phasing

Site development for each phase will occur in three overlapping stages:

- 1. Site Preparation,
- 2. Construction, and
- 3. Final grading and Stabilization.

Site Preparation Stage

Prior to beginning any construction activities, construction fences will be installed as shown on the attached project plans. Silt fencing and hay bale barriers will be entrenched to eliminate sediment underflow. Fencing will be placed around trees to be protected and will be at a minimum at the drip line of the longest branches. The erosion control barriers will be inspected and maintained routinely throughout the duration of the project. Following the installation of erosion and sediment controls, the site grading and excavation will occur.

The following steps will be followed to ensure that the controls are installed correctly and will be effective.

Resource Protection

➤ Evaluate, mark and protect important trees and associated rooting zones, wetlands, onsite septic systems absorption fields, etc.

- ➤ Fencing will be placed around trees to be protected and will be at a minimum at the drip line of the longest branches.
- > Protect existing vegetated areas suitable for filter strips, especially in perimeter areas.
- ➤ Protect stream buffers and phasing lines as neccessary.

Surface Water Protection

- ➤ Identify the drainage area in the plan. Divide the site into natural drainage areas.
- ➤ Divert the off-site clean runoff from entering disturbed areas.
- ➤ Identify bodies of water located either on site or in the vicinity of the site.
- ➤ Plan appropriate practices to protect on-site or downstream surface water and its buffer.

Stabilized Construction Exit

- ➤ Establish a temporary construction entrance to capture mud and debris from construction vehicles before they enter the public highway.
- ➤ Stabilize bare areas (entrances, construction routes, equipment parking areas) immediately as work takes place. Top these areas with gravel or maintain vegetative cover.
- > Sediment tracked onto public streets should be removed or cleaned on a daily basis.
- ➤ A description of the Stabilized Construction Exit is included in Section VI Required Erosion and Sediment Control Practices.

Perimeter Sediment Controls

- ➤ Silt fence material and installation must comply with the standard drawing and specifications.
- > Silt fencing and hay bale barriers will be entrenched to eliminate sediment underflow.
- ➤ Silt fences will be installed based on appropriate spacing intervals. This interval will decrease as the slope increases. Silt fence should be placed on or parallel to contours where there is no concentration of water flowing to the silt fence and where erosion occurs in the form of sheet erosion. On sloped areas, the area below the final silt fence shall be undisturbed ground.
- ➤ Principal sediment basins will be installed after construction site is assessed.
- ➤ Additional sediment traps and barriers will be installed as needed during grading.
- ➤ Erosion control blankets will be stapled and/or staked into place on slopes 4:1 or greater.
- ➤ The erosion control barriers will be inspected and maintained routinely throughout the duration of the project.

Runoff Control

- ➤ Install practices after sediment traps are installed and before land grading starts.
- Control the runoff in each small drainage area before flow reaches runoff from entire site.
- Divert offsite or clean runoff from disturbed areas.
- ➤ Convey surface flows from highly erodible soil and steep slopes to more suitable stable areas.
- Runoff from existing or proposed cut and fill slopes should be redirected to reduce water velocity without causing erosion.
- ➤ Final site drainage should be designed to prevent erosion, concentrated flows to adjacent properties, uncontrolled overflow, and ponding.

Runoff Conveyance System

- ➤ Stabilize conveyance system.
- Channels and streambanks need to be seeded at the outlet points.
- Install check dams to slow down the velocity of concentrated flow.
- ➤ Protect existing natural drainage systems and streams by maintaining vegetative buffers and by implementing other appropriate practices.

Groundwater Recharge Measures

- ➤ Install practices to infiltrate the runoff on the site as much as possible.
- ➤ Provide groundwater recharge to maintain the hydrologic regime of the downstream water bodies and simulate predevelopment hydrology.
- ➤ Use infiltration practices to prevent concentrated flows.
- Provide soil decompaction or minimizing unnecessary soil compaction on site.

Temporary sediment basins will be constructed during this phase. Temporary berms and swales will be used to direct runoff to the basins on the site.

No sediment-laden water will be allowed to discharge to resource areas or to the existing stormwater management system on the site. Following the installation of erosion and sediment controls, the site grading and excavation will occur.

Construction Stage

The proposed building, access drive, utility/infrastructure, stormwater management system, and landscaping will be constructed during this phase. Temporary swales and berms will be constructed and maintained and relocated by the contractor as necessary to control and direct runoff to temporary basins during this phase.

Grading

- ➤ Limit the initial clearing and earth disturbance to that necessary to install sediment control measures. Excavation for footings, clearing, or other earth disturbance may only take place after the sediment and erosion controls are installed.
- Stockpile the topsoil removed from the site. The topsoil should be protected, stabilized and sited in a location away from the storm drains and waterbodies, and saved on-site for reuse if not contaminated.
- Changes in grade or removal of vegetation should not disturb established buffers and should not be allowed within any regulated distance from wetlands, the high water line of a body of water affected by tidal action, or other such protected zones.
- ➤ Avoid unnecessry disturbance of steep slopes.
- ➤ An undisturbed buffer should be maintained to control runoff from steep slopes within sensitive areas.
- ➤ Proposed grading should not impair existing surface drainage resulting in a potential erosion hazard impacting adjacent land or waterbodies.

Erosion Control (Stabilization)

- ➤ Implement erosion control practices to keep the soil in place.
- > Stabilization should be completed immediately for the surface of all perimeter controls and perimeter slopes.
- When activities temporarily cease during construction, soil stockpiles and exposed soil should be stabilized by seed, mulch or other appropriate measures as soon as possible, but in no case more than 14 days after construction activity has ceased.
- ➤ Apply temporary or permanent stabilization measures immediately on all disturbed areas where work is delayed or completed.
- ➤ Where the initiation of stabilization measures by the 14th day after construction activity temporarily or permanently ceased is precluded by snow cover or frozen ground conditions, stabilization measures shall be initiated as soon as practicable;
- ➤ For an area to be disturbed is more than five (5) acres at one time; in areas where soil disturbance activity has been temporarily or permanently ceased, temporary and/or permanent soil stabilization measures shall be installed and/or implemented within seven (7) days from the date the soil disturbance activity ceased. The soil stabilization measures selected shall be in conformance with the most current version of the technical standard, New York State Standards and Specification for Erosion and Sediment Control.
- ➤ Consult the local Soil and Water Conservation District for proper timing and application rate of seed, fertilizer and mulch.

Sediment Control

- At any location where surface runoff from disturbed or graded areas may flow off the construction area, sediment control measures must be installed to prevent sediment from being transported off site. No grading, filling or other disturbance is allowed within existing drainage swales.
- > Swales or other areas that transport concentrated flow should be appropriately stabilized.
- ➤ Downspout or sump pump discharges must have acceptable outfalls that are protected by splash blocks, sod, or piping as required by site conditions (i.e., no concentrated flow directed over fill slopes).

Maintenance and Inspections

- ➤ Identify the type, number and frequency of maintenance actions required for stormwater management and erosion control during construction and for permanent practices that remain on the site once construction is finalized.
- ➤ Inspections must be indicated on the Construction Sequence Schedule to be prepared by the owner/contractor.
- ➤ Inspections must be performed every 7 calendar days.
- ➤ For construction where soil disturbance activities are greater than five (5) acres of soil at any one time, the inspection must be performed at least two (2) times every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- ➤ Inspections must verify that all practices are adequately operational, maintained properly, and that sediment is removed from all control structures.
- ➤ Inspections must look for evidence of the soil erosion on the site, potential of pollutants entering drainage systems, problems at discharge points (such as turbidity in receiving water), and signs of soil and mud transport from the site to the public road at the entrance.
- ➤ Routine maintenance must be identified on the schedule and performed on a regular basis and as soon as a problem is identified.
- ➤ Identify the person or entities responsible for conducting the maintenance actions during construction and post-construction.
- ➤ Retain a copy of the inspection on-site with the SWPPP.
- ➤ Color photographs shall be taken during inspection and shall be included in the inspection report.
- ➤ Inspection and maintenance shall be in compliance with Part IV of the SPDES Permit requirements.

Final Grading and Stabilization Stage

Final site grading and stabilization will be completed as soon as practicable to eliminate exposed soils and potential sources of erosion. Areas to be paved will be covered by bituminous pavement after final subgrades are established. All litter, as well as debris generated by construction activities, will be removed by hand from the site and adjacent undeveloped areas.

Finalize Grading & Landscaping

- ➤ Identify the final grading and stabilization plan once the construction is completed.
- ➤ All open areas, including borrow and spoil areas must be stabilized.
- Plan a permanent top soil, seed, sod, mulch, riprap or other stabilization practices in the remaining disturbed areas as appropriate.
- ➤ Stabilization must be undertaken no later than 14 days after construction activity has ceased except as noted in the GP-0-10-001.
- ➤ Remove the temporary control measures.
- ➤ Provide soil decompaction or minimizing unneccessary soil compaction on site.

Post-construction Controls

- ➤ Identify the permanent structural or non-structural practices that will remain on the site.
- ➤ Ensure that the permanent structural or non-structural practices utilized during construction are properly designed to suit the post-construction site conditions.
- ➤ In finalizing the plan, evaluate the post-construction runoff condition on the site.
- ➤ Minimize the risk of concentrated flow and erosion.
- On-site runoff controls help reduce the risk of increased runoff velocity, erosion and point source discharge. In addition to the standard runoff and erosion control practices identified in NY Standards for Erosion and Sediment Control, some of the techniques discussed under on-site runoff control in the discussion of Site Preparation may be applied.

Project Materials

The materials or substances below are expected to be present on-site during the construction period:

Structural Steel Welding Supplies

Concrete Petroleum-Based Products

Metal StudsPaintsCleaning SolventsWoodDetergentsFertilizer

This materials list will be updated by the contractor, as necessary, prior to and during the construction process.

Non-Industrial Discharges

The following non-stormwater discharges may occur on this construction site:

- Fire hydrant flushing;
- Potable water including uncontaminated water line flushing;
- ➤ Pavement wash water where spills or leaks of toxic or hazardous materials have not occurred (unless all spilled material has been removed) and where detergents are not used;
- Uncontaminated air conditioning or compressor condensate;
- Uncontaminated ground water or spring water;
- ➤ Foundation or footing drains where flows are not contaminated with process materials such as solvents; and
- Uncontaminated excavation dewatering;

V

Construction Schedule and Sequence

Construction is proposed to occur in three phases. The first phase is planned for Years 1-3, and will include construction of the wastewater treatment plant, water treatment facility, most of the Clubhouse, Village Green neighborhood condominiums and town homes, the Golf Villa neighborhood, 10 South Lawn neighborhood single-family homes, 31 Estate neighborhood single-family homes, Sales Center and General Store, the Artisan's Park Overlook, and related infrastructure. Golf course renovations will also occur during Phase 1. The second phase is planned for Years 4 and 5, and will include construction of the remaining portion of the Clubhouse, 26 Estate neighborhood homes, 22 South Lawn neighborhood homes, and related infrastructure. The third phase is planned for Years 5 to 7, and will include construction of the Vineyard Cottages, a pool and cabana for residents of the Vineyard Cottages, Winery Restaurant, and related infrastructure. A detailed phasing plan is contained in sheet SP-5 of the MDP Plans.

The Owner/Operator will update his construction schedule and sequence as needed and maintain a list of construction milestones.

The Site Contractor shall follow construction sequence scheduling as shown on the Site Plans provided for each construction phase. The sequence of actions in an Erosion and Sediment Control (E&SC) plan is runoff control, stabilization, and then sediment control. The management practices used in each phase of the plan must be identified on the Construction Sequence Schedule and/or on appropriate maps.

Erosion and sediment control provisions should be included for all construction activities where any excavation, stripping, filling, grading or earth movement takes place. Provide dimensional details of proposed practices. The details must include plan & vertical view (cross sectional design) calculations used in the sizing and justification for the siting of selected practices.

 \mathbf{VI}

Required Erosion and Sediment Control

The Owner/Operator will be responsible for ensuring that the specified stormwater pollution control measures are installed, maintained, relocated and added to as necessary. Details of recommended stormwater pollution control techniques are provided below.

Erosion and Sediment Controls

The purpose of an erosion and Sediment control program is to minimize temporary impacts to downgradient wetlands during the construction phase of the project by retaining sediment on site to the maximum extent practicable. The program incorporates BMPs specified in guidelines developed by the DEC¹ and complies with the requirements of the SPDES General Permit for Storm Water Discharges from Construction Activities.

Proper implementation of the erosion and Sediment control program will:

- minimize exposed soil areas through temporary seeding and construction sequencing;
- place structures to manage stormwater runoff and erosion; and
- establish a permanent vegetative cover or other forms of stabilization as soon as practicable.

All manufactured control measures must be installed and maintained in accordance with the manufacturer's specifications. The following sections describe the erosion and Sediment controls that will be used on this site. The Owner/Operator will implement and add to these site conditions, when required.

Stabilization Practices

Stabilization practices to be used on this site include mulching and temporary seeding. Stabilization practices will be initiated as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased. The project has been designed to preserve existing vegetation where possible.

¹ New York State Department of Environmental Conservation (DEC). New York Stormwater Management Design Manual, August 2010 and New York Standards and Specifications for Erosion and Sediment Control, August 2005

Site Layout

A naturally occurring vegetated buffer that will be flagged on site before construction will provide protection for the on-site wetland areas and resources adjacent to the site in addition to the various selected BMPs.

Mulching

Straw mulching will be employed on all inactive and disturbed areas that will remain unstabilized for more than 14 days. Mulch materials will be spread uniformly by hand or machine at a rate of approximately 100 pounds per 1,000 square feet. Mulch will be spread such that at least 75 percent of the ground surface is covered. Mulching may be used with temporary or permanent seeding, or with slope stabilization techniques. Hydro mulch may also be used for temporary soil stabilization

➤ For an area to be disturbed is more than five (5) acres at one time; in areas where soil disturbance activity has been temporarily or permanently ceased, temporary and/or permanent soil stabilization measures shall be installed and/or implemented within seven (7) days from the date the soil disturbance activity ceased. The soil stabilization measures selected shall be in conformance with the most current version of the technical standard, New York State Standards and Specification for Erosion and Sediment Control.

Erosion Control Slope Blankets

Upon completion of final grading, any areas not covered by pavement, other forms of stabilization or landscaping and which are on slopes of 4:1 and greater will be protected with erosion control slope blankets and seeded with an erosion control seed mix. The blanket will be installed from the top of the slope, with the upper edge of the blanket secured in a trench. Blankets shall be unrolled down the slope or swale in the direction of the water flow. Edges of blanket shall be stapled with approximately four inches of overlap where two or more strip widths are required. The end of an upper blanket shall overlap the end of a lower blanket by at least six inches and both ends shall be stapled in place. The blankets will be staked and/or stapled into place as per manufacturer's recommendations.

Temporary Seeding

A temporary vegetative cover will be established on areas of exposed soils (including stockpiles) that remain inactive and unstabilized for a period of more than 14 days for slopes. The seeded surfaces will be covered with a layer of straw mulch or hydro mulch as described above.

Permanent Seeding

Upon completion of final grading, any areas not covered by pavement, other forms of stabilization, or other methods of landscaping will be seeded with an erosion control seed

mix. Loamed and seeded areas will be mulched with hay to prevent erosion prior to germination of the seed.

Structural Practices

Structural erosion and Sediment controls to be used on the site include the following:

Hay Bale and Silt Fence Barriers

Prior to any ground disturbance, a professional engineer or land surveyor will certify that a barrier of staked hay bales and silt fence is in place at the downgradient limit of work in accordance with the plan filed with the Conservation Commission (see relevant plans). When necessary, additional hay bale and silt fence barriers will be installed immediately downgradient of erosion-prone areas, such as the base of steep exposed slopes and around the base of stockpiles, throughout the construction phase of the project. The barriers will be entrenched into the substrate to prevent underflow.

The erosion control barriers will be inspected weekly and after every storm event. Any sediment that collects behind the barriers will be removed and will be either reused at the site or disposed of at a suitable offsite location. Any damaged sections of silt fence or hay bales will be repaired or replaced.

Catch Basin Inlet Protection

The inlets of proposed catch basins will be protected from sediment inflow during the work period by following the guideline specify by New York State Standards and Specifications for Erosion and Sediment Control (aka blue book) or approved equal.

Stabilized Construction Exits

Stone anti-tracking pads will be installed at each access point to the work area to prevent the off-site transport of sediment by construction vehicles. The stabilized construction exits will be at least fifty feet long and will consist of a 6-inch thick layer of crushed stone (1.5 to 2.5 inches in diameter). The stone will be placed over a layer of non-woven filter fabric. The anti-tracking pads will remain in place until a binder coat of pavement has been established in areas to be paved.

Diversion Channels

Diversions will also be used to collect runoff from construction areas and convey it to a temporary sediment basin or trap. Diversion Channels must be constructed properly with stabilized beds using crushed stone, plastic or other approved materials, crushed stone check dams as necessary.

Temporary diversions will remain in place until slopes are permanently stabilized or graded level. If vegetation of the diversion channel is required to avoid erosion of the channel, the channel will be temporarily stabilized to ensure viability of the grass seed.

Temporary Sediment Basins

Temporary sediment basins will be designed either as excavations or bermed stormwater detention structures (depending on grading) that will retain runoff for a sufficient period of time to allow suspended soil particles to settle out prior to discharge. These temporary basins will be located at the low points on the site and will receive runoff via temporary diversion swales. A perforated riser surrounded by a crushed stone filter will control discharge from the basin. Points of discharge from sediment basins will be stabilized to minimize erosion. Refer to attachment E for detail calculations.

Riprap Outlet Protection

The purpose of riprap outlet protection is to reduce velocity and energy of water such that the flow will not erode the receiving downstream reach. The riprap outlet protection is placed at the outlet of the culvert, drainage pipe, channels. Refer to attachment E5 for details calculations.

Construction Details of Erosion & Sediment Control Practices

The construction details of erosion & sediment control practices can be found at page C14.01 and C14.02 in the site plan set.

VII

Additional Erosion and Sediment Controls

The following controls may be implemented at the site if necessary.

Interior Site Erosion Controls

Additional erosion controls may be used in the central portions of the site in the event that excessive erosion occurs. Placement of temporary silt fence, hay bales or earthen berms may be used to control the movement of material within the site. If such controls are deemed necessary for adequate protection, they will be installed perpendicular to the flow direction to contain sediment. These measures will be installed to prevent perimeter erosion controls and diversion swales from becoming compromised.

Dust Control

Fugitive dust from large areas of unstabilized soil can be a problem during construction. On dry and windy days when dust generation is a concern, a water truck will traverse the site and spray water as necessary to prevent dust from forming.

VIII

Water Quality and Water Quantity Controls

The Owner/Operator will be responsible for ensuring that the specified water quality and water quantity control measures are installed and maintained as necessary. Details of recommended stormwater pollution control techniques are provided below.

Water Quality Controls

Water quality control measures are designed to minimize impact to receiving waterbodies from stormwater pollution. As stormwater runoff travels across impervious surfaces, it collects pollutants such as sediments, oil, and trash and carries them to a receiving waterbody. Properly installed and maintained stormwater best management practices (BMPs) can capture these pollutants and reduce the impact that the proposed development has on the environment. The BMPs selected for this project were designed based on guidelines developed in the New York State Stormwater Management Design Manual².

Proper implementation of the water quality control measures will:

- reduce post-construction sediment impacts; and
- > promote infiltration of stormwater to maintain pre-construction hydrology

All manufactured control measures must be installed and maintained in accordance with the manufacturer's specifications. The following sections describe the water quality controls that will be used on this site. The Owner/Operator will implement and add to these site conditions, when required.

² New York State Department of Environmental Conservation (DEC). New York Stormwater Management Design Manual, August 2010

Non-structural Practices

Pavement Sweeping

The sweeping program will remove sediments and contaminants directly from paved surfaces before their release into stormwater runoff. Pavement sweeping has been demonstrated to be an effective initial treatment for reducing pollutant loading.

Catch Basin Cleaning

Sediments and other contaminants that are not removed by pavement sweeping are transported by stormwater runoff to the site's catch basin system. Once in the catch basin, they settle to the bottom of the system. This material will be removed on a regular basis to prevent contaminants from migrating out of the drainage system during high flow events or reducing the infiltration capacity of the devices.

Structural Practices

Structural erosion and Sediment controls to be used on the site include the following:

Underground Sand Filter

Underground sand filter is an infiltration practice that treats, capture and termprarily store the stormwater as it flows through a filter bed of sand. Sediment chamber need to be cleaned when the sediment chamber reaches more than 6" in depth. Silt/sediment removed from the filter bed after it reaches one inch.

Wet Extended Detention Pond

Forebay and permanent pool are part of the proposed detention basin. The purpose of forebay and permanent pool are to trap sediment from on-site runoff. Sediment removal in the forebay and permanent pool shall be performed every five to six years or after 50% of its capacity have been lost.

Infiltration Practices

The following infiltration practices have been selected and approved for installation at this site.

Infiltration Basin

Infiltration basin capture and temporarily store the WQv before allowing it to infiltrate into the soil. Underdrain pipe is proposed at the infiltration basin to enhance the infiltration of process. All of the proposed infiltration basins are for golf phase except SWM #11 where it

also receive some of the runoff from full built conditions as indicated on Figure SW-1 (in MDP drawing set).

Water Quantity Controls

Water quantity controls are implemented to manage the discharge rate of stormwater runoff generated from the proposed development. The primary goals of stormwater quantity management are to make sure the 10-year storm (overbank flood) and 100-year storm (Extreme flood) flow rates under proposed conditions are equal or less than the existing conditions.

Detention Practices

Wet Extended Detention Pond / Dry Detention Basin

The detention pond/basin storage volume and a set of outlet openings that is consists of orifice(s), weir(s) and emergency spillway are the major component in water quantity control measure. The outlet openings are designed such that all the proposed flow rates under proposed conditions are equal or less than the existing conditions.

Underground Detention Pipe

The underground pipes with storage volume are temporarily store the flood volume and slowly discharging the volume through outlet structure. The outlet openings are designed such that all the proposed flow rates under proposed conditions are equal or less than the existing conditions.

Maintenance, Inspections and Project Documentation

The SPDES Construction General Permit requires that the Owner/Operator be responsible for implementing, inspecting and maintaining each of the stormwater controls described in the plan. In addition, the Owner/Operator must document compliance with the Permit throughout construction.

Inspections

The operator shall have a qualified professional conduct an assessment of the site prior to the commencement of construction and certify in an inspection report that the appropriate erosion and sediment controls described in the SWPPP and required by this permit have been adequately installed or implemented to ensure overall preparedness of the site for the commencement of construction.

Following the commencement of construction, site inspections shall be conducted by the qualified professional at least every 7 calendar days. If the soil disturbance is greater than five (5) acres at any one time, the qualified inspector shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days. During each inspection, the qualified professional shall record the information required by Part IV.C.4 of the Permit. Color photographs shall be taken during inspection and shall be included in the inspection report

Inspections shall include all areas of the site disturbed by construction activity and areas used for materials storage that are exposed to precipitation. The Inspector must look for evidence of, or the potential for, pollutants entering the storm water system, inspect the BMPs installed as part of the Plan, inspect the site drainage outfalls and inspect the site egress points for tracking. If, in the course of the inspection, the inspector identifies an eroded area or an area impacted by sedimentation, additional erosion and Sediment controls will be implemented, and the SWPPP will be revised to include these changes.

For each inspection, the Inspector must complete a written inspection report in accordance with the Permit. A sample inspection form has been included at the end of this section. The operator shall maintain a record of all inspection reports in a site log book. The site log book shall be maintained on site and be made available to the permitting authority upon request. Prior to the commencement of construction, the operator shall certify in the site log book that

the SWPPP, prepared in accordance with Part III of this permit, meets all Federal, State and local erosion and sediment control requirements. The operator shall post at the site, in a publicly-accessible location, a summary of the site inspection activities on a monthly basis.

The completed forms become part of the Owner/Operator's SWPPP and should be maintained for five years after the filing of the Notice of Termination. Prior to filing of the Notice of Termination or the end of permit term, the operator shall have the qualified professional perform a final site inspection. The qualified professional shall certify that the site has undergone final stabilization using either vegetative or structural stabilization methods and that all temporary erosion and sediment controls (such as silt fencing) not needed for long-term erosion control have been removed.

Maintenance

All erosion and sediment controls and other protective measures identified in the SWPPP must be maintained in effective operating condition. If site inspections identify BMPs that are not operating effectively, maintenance, modification or replacement with an alternative or additional BMPs must be performed as soon as possible, and before the next storm event whenever practicable. If implementation before the next storm event is impracticable, the situation must be documented in the SWPPP and alternative BMPs must be implemented as soon as possible.

The following maintenance program is proposed to ensure the effectiveness of the structural controls during the construction phase of this project:

- ➤ The on-site representative will inspect all sediment and erosion control structures and records of the inspections will be prepared and maintained on-site by the Owner/Operator.
- > Silt shall be removed from behind barriers if greater than 6-inches deep or as needed.
- ▶ Paved areas of the site will be swept on an as needed basis during the site construction.
- ➤ Damaged or deteriorated items will be repaired immediately after identification.
- ➤ The underside of hay bales should be kept in close contact with the earth and reset as necessary.
- > Sediment from sediment traps or sedimentation ponds must be removed when design capacity has been reduced by 50 percent or every five to six years.
- Sediment that is collected in structures shall be disposed of properly and covered if stored on-site.
- Erosion control structures shall remain in place until all disturbed earth has been securely stabilized. After removal of structures, disturbed areas shall be re-graded and stabilized as necessary.
- ➤ A conspicuous and legible sign of not less than 18 inches by 24 inches shall be erect or post in the immediate vicinity of each stormwater management practices bearing the following information:

Stormwater Management Practice – (name of practice)
Project Identification - (SPDES Construction Permit #, other)
Must Be Maintained In Accordance With O&M Plan
DO NOT REMOVE OR ALTER

- ➤ Refer to drawing sheet C-14.01 and C14-02 for stromwater management details drawing.
- ➤ Refer to Appendix B for the maintenance inspection checklist for each stormwater management practices.

If, in the course of the inspection, the inspector identifies an eroded area or an area impacted by sedimentation, additional erosion and sediment controls will be implemented, and the SWPPP will be revised to include these changes.

Documentation

The following records must be maintained as part of the Owner/Operator's SWPPP:

- Dates when major grading activities occur;
- ➤ Dates when construction activities temporarily or permanently cease on a portion of the site:
- ➤ Dates when stabilization measures are initiated;
- Inspection dates and processes.

X

Spill Prevention Plan and Response Procedures

All construction personnel will be instructed regarding spill prevention practices and procedures. Notices stating these practices will be posted in the office trailer, and the site construction supervisor will be responsible for seeing that these procedures are followed.

Material Management Practices

The following material management practices will be used to reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff. These include good housekeeping practices and guidelines for the handling of hazardous products.

The following good housekeeping practices will be followed on-site during the construction period.

- ➤ An effort will be made to store only enough products required to do the job.
- ➤ All materials stored on-site will be stored in a neat, orderly manner in their appropriate containers, and (if possible) under a roof or other enclosure.
- > Products will be kept in their original containers with the original manufacturer's label.
- Substances will not be mixed with one another unless recommended by the manufacturer.
- ➤ Whenever possible, all of a product will be used before disposing of the container.
- ➤ Manufacturer's recommendations for proper use and disposal will be followed.
- ➤ The site superintendent will inspect the storage area daily to ensure proper use and disposal of materials on-site.

The following practices will reduce the risks associated with hazardous materials (e.g., petroleum products, solvents):

- ➤ A copy of all Material Safety Data Sheets (MSDS) for materials or products used during construction will be kept in the office trailer.
- ➤ Products will be kept in original containers unless they are not re-sealable.

- ➤ Original labels and material safety data (MSD sheets) will be retained; they contain important product information.
- ➤ If surplus product must be disposed, manufacturer's or local- and state-recommended methods for proper disposal will be followed.

Product-Specific Practices

The following product-specific practices will be followed on-site. Recommendations are provided for petroleum products, fertilizers, solvents, paints, and other hazardous substances, and concrete.

Petroleum Products

All on-site vehicles will be monitored for leaks and will receive regular preventive maintenance to reduce the chance of leakage. No vehicle maintenance or handling of petroleum products will occur within 100 feet of a wetland or waterway. Petroleum products will be stored in tightly sealed containers that are clearly labeled. Any asphalt substances used on-site will be applied according to manufacturer's recommendations. No petroleum-based or asphalt substances will be stored within 100 feet of a wetland or waterway.

Fertilizers

Fertilizers will be applied only in the minimum amounts recommended by the manufacturer. Once applied, the fertilizer will be worked into the soil to limit exposure to stormwater. Storage will be in a covered shed; and the contents of any partially used bags will be transferred to a sealable, plastic bin to avoid spills. No fertilizer storage will occur within 100 feet of a wetland or waterway. Refer to the "NYS Dishwater Detergent and Nutrient Runoff Law" for regulation regarding usage of fertilizers. Usage of fertilizers also shall be restricted in the aquifer overlay district and any restrictions from the habitat management plan.

Solvents, Paints, and other Hazardous Substances

All containers will be tightly sealed and stored when not required for use. Excess materials will not be discharged to the storm sewer system, but will be properly disposed according to manufacturer's instructions or state and local regulations. No storage will occur within 100 feet of a wetland or waterway.

Concrete Trucks

Concrete trucks will not be allowed to wash out or discharge surplus concrete or drum wash water within 100 feet of wetland resources or into catch basins that are already in place.

Spill Control/Notification Practices

In addition to the good housekeeping and material management practices discussed above, the following practices will be followed for spill control, notification and cleanup.

- Manufacturer's recommended methods for spill cleanup will be clearly posted and site personnel will be informed of the procedures and the location of the information and cleanup supplies.
- ➤ Materials and equipment necessary for spill cleanup will be kept in the material storage area on-site. Equipment and materials will include, but will not be limited to, shovels, wheelbarrows, brooms, dustpans, mops, rags, gloves, goggles, kitty litter or Speedi-Dry, sand, sawdust, and plastic and metal trash containers specifically designated for this purpose.
- ➤ All spills will be cleaned up immediately after discovery.
- ➤ The spill area will be kept well ventilated and personnel will wear protective clothing to prevent injury from contact with a hazardous substance.
- ➤ Spills of toxic or hazardous material in excess of reportable quantities, as established by the New York State Department of Environmental Conservation (NYSDEC), will be reported to the NYSDEC Spill Hotline: 1-800-457-7362 (within NYS) or 1-518 457-7362 (from outside NYS) or to the National Response Center: 1-800-424-8802. The Emergency Spill Response Procedure is attached.
- ➤ The construction superintendent responsible for the daily operations will be the spill prevention and cleanup coordinator. He will designate at least three other site personnel to receive spill prevention and cleanup training. The names of the responsible spill personnel will be posted in the material storage area and in the on-site office trailer.

Source Control

Trash removal, designated trash storage areas, pavement sweeping and the controlled use of fertilizer and deicing agents on the site will reduce the pollutant load in the site's stormwater management system.

Construction Trash Removal

Daily loose trash removal will prevent litter, construction debris, and construction chemicals exposed to stormwater from becoming a pollutant source for stormwater discharges. All loose trash will be placed in appropriate storage containers until disposed of properly off-site.

Covered Trash/Storage Areas

Areas to be used for storing dumpsters, compactors or other raw or waste materials will be covered to prevent contact with stormwater.

Pavement Sweeping

Pavement sweeping may be required daily or even more frequently during construction where sediment tracking from construction equipment is a problem.

Fertilizer

Only slow-release organic fertilizers will be used in landscaped areas. This will limit the amount of nutrients that could enter the stormwater and wetland systems. Fertilizer use will be reduced once the proposed landscaping is established. Refer to the "NYS Dishwater Detergent and Nutrient Runoff Law" for regulation regarding usage of fertilizers.

Waste Disposal

All waste materials will be collected and stored in securely lidded metal dumpsters leased from a licensed solid waste management company and the dumpster will be emptied as necessary. Trash will be hauled by a licensed contractor and disposed in accordance with federal, state, and local environmental regulations. No trash or construction waste will be buried on-site, and all personnel will be instructed regarding the correct procedure for waste disposal. Notices stating these practices will be posted in the office trailer and the site construction supervisor will be responsible for seeing that these procedures are followed.

Hazardous Waste

All hazardous waste materials (e.g., petroleum products, solvents) will be disposed in the manner specified by local and state regulation, or by the manufacturer. Site personnel will be instructed in these practices, and the site construction supervisor will be responsible for seeing that these procedures are followed.

Sanitary Waste

All sanitary waste will be collected from the portable units by a licensed contractor a minimum of three times weekly, and disposed in compliance with state and local regulation.

Spill Response Procedure

Initial Notification

In the event of a spill, the	e facility an	d/or construction manager or supervis	or will be notified immediately.
Facility Manager:	(name)		
	(phone)		
Construction Manager:	(name)		
	(phone)		

Assessment - Initial Containment

The supervisor or manager will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. The supervisor will first contact the *Town of Amenia* Fire Department and then notify the *Town of Amenia* Police Department and *Dutchess County* Public Health Commission. The fire department is ultimately responsible for matters of public health and safety and should be notified immediately.

Fire Department: 911 or (845) 373-8467

Police Department: (845) 373-4300

Dutchess County Public Health Commission: (845) 486-3400

(845) 431-6465 (after hours)

Further Notification

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The New York Department of Environmental Conservation and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the main construction/facility office and readily accessible to all employees.

NYSDEC Spill Hotline: 1-800-457-7362 (within NYS)

National Response Center: 1-800-424-8802 / (518) 457-7362 (outside NYS)

For further information, contact:

New York State Department of Environmental Conservation

Division of Environmental Remediation

Bureau of Spill Prevention & Response

625 Broadway - 11th Floor

Albany, NY 12233-7020

(518) 402-9546

HAZARDOUS WASTE / OIL SPILL REPORT

Date//		Time	AM / PM		
Exact location (Trai	nsformer #)				
Type of equipment_					
S/N					
On or near water					
	□ No	·	•		
Type of chemical /	oil spilled				
Amount of chemica	I / oil spilled				
Cause of spill					
Measures taken to	contain or clea	n up spill			
Amount of chemica	I / oil recovered	d	Method		
Material collected a	s a result of cle	ean up			
dru	ms containing_				
dru	ms containing_				
dru	ms containing_				
Location and method					
					_
Name and address	of any person,	firm, or corpo	ration suffering d	amages	
Procedures, metho	d, and precauti	ons instituted	to prevent a simil	ar occurrence fron	n recurring
Spill reported to Ge	neral Office by			Time	AM / PM
Spill reported to DE	C / National Re	esponse Cent	er by		
DEC Date /	/	Time	AM / PM	Inspector	
NRC Date/	/	Time	AM / PM	Inspector	
Additional commen	ts				

EMERGENCY RESPONSE EQUIPMENT INVENTORY

The following equipment and materials shall be maintained at all times and stored in a secure area for construction activities emergency response need.

 SORBENT PADS	5 PADS
 SAND BAGS (empty)	10
 SPEEDI-DRI ABSORBENT	5 40# BAGS
 SHOVEL	1
 PICK	1
 PRY BAR	1

The following items shall be placed in a convenient, readily accessible location on site.

-- HAY BALES & GRADE STAKES 10

-- SAND 2 CUBIC YARDS

EMERGENCY NOTIFICATION PHONE NUMBERS

1.	SUPERVISOR/MANAGER NAME:
	ALTERNATE: NAME: BEEPER: PHONE: HOME PHONE:
2.	Town of Amenia FIRE DEPARTMENT EMERGENCY: 911 or (845) 373-8467
	Town of Amenia POLICE DEPARTMENT GENERAL NUMBER: (845) 373-4300
3.	CLEANUP CONTRACTOR: ADDRESS: PHONE:
4.	NEW YORK DEPARTMENT OF ENVIRONMENTAL CONSERVATION EMERGENCY: 1-800-457-7362 OUTSIDE NEW YORK: 1-518 457-7362
5.	NATIONAL RESPONSE CENTER PHONE: 1-800-424-8802
	ALTERNATE: U.S. ENVIRONMENTAL PROTECTION AGENCY BUSINESS: 1-212-637-3660
6.	Dutchess County PUBLIC HEALTH COMMISSION – ENVIRONMENTAL PROTECTION PHONE: (845) 486-3400 (845) 431-6465 (after hours)

XI

Notice of Termination Form

New York State Department of Environmental Conservation Division of Water

625 Broadway, 4th Floor Albany, New York 12233-3505

(NOTE: Submit completed form to address above)

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity

Please indicate your permit identification number: NYR	·	
I. Owner or Operator Information		
1. Owner/Operator Name:		
2. Street Address:		
3. City/State/Zip:		
4. Contact Person:	4a.Telephone:	
5. Contact Person E-Mail:		
II. Project Site Information		
5. Project/Site Name:		
6. Street Address:		
7. City/Zip:		
8. County:		
III. Reason for Termination		
9a. ☐ All disturbed areas have achieved final stabilization in accordanc *Date final stabilization completed (month/year):	e with the general permit and SWPPP.	
9b. ☐ Permit coverage has been transferred to new owner/operator. Indicate new owner/operator's permit identification number: NYR		
9c. □ Other (Explain on Page 2)		
IV. Final Site Information:		
10a. Did this construction activity require the development of a SWPP stormwater management practices? ☐ yes ☐ no (If no, go to	P that includes post-construction o question 10f.)	
10b. Have all post-construction stormwater management practices inclu ☐ yes ☐ no (If no, explain on Page 2)	ided in the final SWPPP been constructed?	
10c. Identify the entity responsible for long-term operation and mainten	nance of practice(s)?	

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the **SPDES General Permit for Construction Activity - continued** 10d. Has the entity responsible for long-term operation and maintenance been given a copy of the operation and maintenance plan required by the general permit? \Box yes 10e. Indicate the method used to ensure long-term operation and maintenance of the post-construction stormwater management practice(s): ☐ Post-construction stormwater management practice(s) and any right-of-way(s) needed to maintain practice(s) have been deeded to the municipality. ☐ Executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s). ☐ For post-construction stormwater management practices that are privately owned, the deed of record has been modified to include a deed covenant that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan. ☐ For post-construction stormwater management practices that are owned by a public or private institution (e.g. school, college, university), or government agency or authority, policy and procedures are in place that ensures operation and maintenance of the practice(s) in accordance with the operation and maintenance plan. 10f. Provide the total area of impervious surface (i.e. roof, pavement, concrete, gravel, etc.) constructed within the disturbance area? 11. Is this project subject to the requirements of a regulated, traditional land use control MS4? \Box yes \Box no (If Yes, complete section VI - "MS4 Acceptance" statement V. Additional Information/Explanation: (Use this section to answer questions 9c. and 10b., if applicable) VI. MS4 Acceptance - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative (Note: Not required when 9b. is checked -transfer of coverage) I have determined that it is acceptable for the owner or operator of the construction project identified in question 5 to submit the Notice of Termination at this time. Printed Name: Title/Position: Signature: Date:

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued

VII. Qualified Inspector Certification - Final Stabilization:

I hereby certify that all disturbed areas have achieved final stabilization as defined in the current version of the general permit, and that all temporary, structural erosion and sediment control measures have been removed. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.		
Printed Name:		
Title/Position:		
Signature:	Date:	
VIII. Qualified Inspector Certification - Post-construction Stormwater Management Practice(s):		
I hereby certify that all post-construction stormwater management practices have been constructed in conformance with the SWPPP. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.		
Printed Name:		
Title/Position:		
Signature:	Date:	
IX. Owner or Operator Certification		
I hereby certify that this document was prepared by me or under my direction or supervision. My determination, based upon my inquiry of the person(s) who managed the construction activity, or those persons directly responsible for gathering the information, is that the information provided in this document is true, accurate and complete. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.		
Printed Name:		
Title/Position:		
Signature:	Date:	

(NYS DEC Notice of Termination - January 2010)

XII

SPDES Permit & Fact Sheet

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES

from

CONSTRUCTION ACTIVITY

Permit No. GP-0-10-001

Issued Pursuant to Article 17, Titles 7, 8 and Article 70 of the Environmental Conservation Law

Effective Date: January 29, 2010 Expiration Date: January 28, 2015

William R. Adriance

Chief Permit Administrator

Authorized Signature

Address:

NYS DEC

Div. Environmental Permits 625 Broadway, 4th Floor Albany, N.Y. 12233-1750

PREFACE

Pursuant to Section 402 of the Clean Water Act ("CWA"), stormwater *discharges* from certain *construction activities* are unlawful unless they are authorized by a *National Pollutant Discharge Elimination System* ("NPDES") permit or by a state permit program. New York's *State Pollutant Discharge Elimination System* ("SPDES") is a NPDES-approved program with permits issued in accordance with the *Environmental Conservation Law* ("ECL").

This general permit ("permit") is issued pursuant to Article 17, Titles 7, 8 and Article 70 of the ECL. An *owner or operator* may obtain coverage under this permit by submitting a Notice of Intent ("NOI") to the Department. Copies of this permit and the NOI for New York are available by calling (518) 402-8109 or at any New York State Department of Environmental Conservation ("the Department") regional office (see Appendix G). They are also available on the Department's website at:

http://www.dec.ny.gov/

An owner or operator of a construction activity that is eligible for coverage under this permit must obtain coverage prior to the commencement of construction activity. Activities that fit the definition of "construction activity", as defined under 40 CFR 122.26(b)(14)(x), (15)(i), and (15)(ii), constitute construction of a point source and therefore, pursuant to Article 17-0505 of the ECL, the owner or operator must have coverage under a SPDES permit prior to commencing construction activity. They cannot wait until there is an actual discharge from the construction site to obtain permit coverage.

*Note: The italicized words/phrases within this permit are defined in Appendix A.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES

FROM CONSTRUCTION ACTIVITIES

TABLE OF CONTENTS

Part I. PERMIT COVERAGE AND LIMITATIONS	5
A. Permit Application	5
B. Maintaining Water Quality	5
C. Eligibility Under This General Permit	5
D. Activities Which Are Ineligible for Coverage Under This General Permit	<i>6</i>
Part II. OBTAINING PERMIT COVERAGE	7
A. Notice of Intent (NOI) Submittal	7
B. Permit Authorization	8
C. General Requirements For Owners or Operators With Permit Coverage	9
D. Permit Coverage for Discharges Authorized Under GP-0-08-001	11
E. Change of Owner or Operator	11
Part III. STORMWATER POLLUTION PREVENTION PLAN (SWPPP)	11
A. General SWPPP Requirements	11
B. Required SWPPP Contents	14
C. Required SWPPP Components by Project Type	18
Part IV. INSPECTION AND MAINTENANCE REQUIREMENTS	18
A. General Construction Site Inspection and Maintenance Requirements	18
B. Owner or Operator Maintenance Inspection Requirements	18
C. Qualified Inspector Inspection Requirements	
Part V. TERMINATION OF PERMIT COVERAGE	
A. Termination of Permit Coverage	
Part VI. REPORTING AND RETENTION OF RECORDS	
A. Record Retention.	
B. Addresses	
Part VII. STANDARD PERMIT CONDITIONS	
A. Duty to Comply	
B. Continuation of the Expired General Permit	
C. Enforcement	
D. Need to Halt or Reduce Activity Not a Defense	
E. Duty to Mitigate	
F. Duty to Provide Information.	
G. Other Information	
H. Signatory Requirements	2 <i>e</i>
I. Property Rights	
J. Severability	
K. Denial of Coverage Under This Permit.	
L. Proper Operation and Maintenance	
M. Inspection and Entry	
N. Permit Actions.	
O. Definitions	29

P. Re-Opener Clause	29
Q. Penalties for Falsification of Forms and Reports	
R. Other Permits	29
APPENDIX A	30
APPENDIX B	35
APPENDIX C	37
APPENDIX D	42
APPENDIX E	43
APPENDIX F	

Part I. PERMIT COVERAGE AND LIMITATIONS

- **A. Permit Application** This permit authorizes stormwater *discharges* to *surface waters* of the State from the following *construction activities* identified within 40 CFR Parts 122.26(b)(14)(x), 122.26(b)(15)(i) and 122.26(b)(15)(ii), provided all of the eligibility provisions of this permit are met:
 - 1. Construction activities involving soil disturbances of one (1) or more acres; including disturbances of less than one acre that are part of a larger common plan of development or sale that will ultimately disturb one or more acres of land; excluding routine maintenance activity that is performed to maintain the original line and grade, hydraulic capacity or original purpose of a facility;
 - 2. Construction activities involving soil disturbances of less than one (1) acre where the Department has determined that a SPDES permit is required for stormwater discharges based on the potential for contribution to a violation of a water quality standard or for significant contribution of pollutants to surface waters of the State.
 - 3. *Construction activities* located in the watershed(s) identified in Appendix D that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land.
- **B.** <u>Maintaining Water Quality</u> It shall be a violation of this permit and the *ECL* for any *discharge* to either cause or contribute to a violation of *water quality standards* as contained in Parts 700 through 705 of Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, such as:
 - 1. There shall be no increase in turbidity that will cause a substantial visible contrast to natural conditions;
 - 2. There shall be no increase in suspended, colloidal or settleable solids that will cause deposition or impair the waters for their best usages; and
 - 3. There shall be no residue from oil and floating substances, nor visible oil film, nor globules of grease.

C. Eligibility Under This General Permit

- 1. This permit may authorize all *discharges* of stormwater from *construction activity* to *surface waters of the State* and *groundwaters* except for ineligible *discharges* identified under subparagraph D. of this Part.
- 2. Except for non-stormwater *discharges* explicitly listed in the next paragraph, this permit only authorizes stormwater discharges from *construction activities*.

(Part I. C)

3. Notwithstanding paragraphs C.1 and C.2 above, the following non-stormwater *discharges* may be authorized by this permit: discharges from fire fighting activities; fire hydrant flushings; waters to which cleansers or other components have not been added that are used to wash vehicles or control dust in accordance with the SWPPP, routine external building washdown which does not use detergents; pavement washwaters where spills or leaks of toxic or hazardous materials have not occurred (unless all spilled material has been removed) and where detergents are not used; air conditioning condensate; uncontaminated groundwater or spring water; uncontaminated discharges from construction site de-watering operations; and foundation or footing drains where flows are not contaminated with process materials such as solvents. For those entities required to obtain coverage under this permit, and who discharge as noted in this paragraph, and with the exception of flows from fire fighting activities, these discharges must be identified in the SWPPP. Under all circumstances, the *owner or operator* must still comply with water quality standards in Part I.B.

D. <u>Activities Which Are Ineligible for Coverage Under This General Permit</u> - All of the following are <u>not</u> authorized by this permit:

- 1. *Discharges* after *construction activities* have been completed and the site has undergone *final stabilization*;
- 2. *Discharges* that are mixed with sources of non-stormwater other than those expressly authorized under subsection C.3. of this Part and identified in the SWPPP required by this permit;
- 3. *Discharges* that are required to obtain an individual SPDES permit or another SPDES general permit pursuant to Part VII, subparagraph K of this permit;
- 4. *Discharges* from *construction activities* that adversely affect a listed, or proposed to be listed, endangered or threatened species, or its critical habitat;
- 5. *Discharges* which either cause or contribute to a violation of *water quality standards* adopted pursuant to the *ECL* and its accompanying regulations;
- 6. *Construction activities* for residential, commercial and institutional projects that:
 - a. are tributary to waters of the state classified as AA or AA-s; and

(Part I. D. 6)

- b. disturb one or more acres of land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey for the County in which the disturbance will occur.
- 7. *Construction activities* for linear transportation projects and linear utility projects that:
 - a. are tributary to waters of the state classified as AA or AA-s; and
 - b. disturb two or more acres of land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey for the County in which the disturbance will occur.
- 8. Construction activities that adversely affect a property that is listed or is eligible for listing on the State or National Register of Historic Places (Note: includes Archeological sites), unless there are written agreements in place with the NYS Office of Parks, Recreation and Historic Preservation (OPRHP) or other governmental agencies to mitigate the effects, or there are local land use approvals evidencing the same.

Part II. OBTAINING PERMIT COVERAGE

A. Notice of Intent (NOI) Submittal

1. An *owner or operator* of a *construction activity* that is <u>not</u> subject to the requirements of a *regulated, traditional land use control MS4* must first develop a SWPPP in accordance with all applicable requirements of this permit and then submit a completed NOI form to the address below in order to be authorized to *discharge* under this permit. The NOI form shall be one which is associated with this permit, signed in accordance with Part VII.H. of this permit.

NOTICE OF INTENT NYS DEC, Bureau of Water Permits 625 Broadway, 4th Floor Albany, New York 12233-3505

2. An *owner or operator* of a *construction activity* that is subject to the requirements of a *regulated, traditional land use control MS4* must first develop a SWPPP in accordance with all applicable requirements of this permit and then have its SWPPP reviewed and accepted by the *MS4* prior to submitting the NOI to the Department. The *owner or operator* shall have the "MS4 SWPPP Acceptance" form signed by the principal executive officer or ranking elected official from the *regulated, traditional land use control MS4*, or by a duly authorized representative of that person, and then submit that form along with the NOI to the address referenced under "Notice of Intent (NOI) Submittal".

(**Part II. A.2**)

This requirement does not apply to an *owner or operator* that is obtaining permit coverage in accordance with the requirements in Part II.E. (Change of Owner or Operator).

- 3. The *owner or operator* shall have the SWPPP preparer sign the "SWPPP Preparer Certification" statement on the NOI prior to submitting the form to the Department.
- 4. As of the date the NOI is submitted to the Department, the *owner or operator* shall make the NOI and SWPPP available for review and copying in accordance with the requirements in Part VII.F. of this permit.

B. Permit Authorization

- 1. An *owner or operator* shall not *commence construction activity* until their authorization to *discharge* under this permit goes into effect.
- 2. Authorization to *discharge* under this permit will be effective when the *owner or operator* has satisfied <u>all</u> of the following criteria:
 - a. project review pursuant to the State Environmental Quality Review Act (SEQRA) have been satisfied, when SEQRA is applicable,
 - b. where required, all necessary Department permits subject to the *Uniform Procedures Act (UPA)* (see 6 NYCRR Part 621) have been obtained, unless otherwise notified by the Department pursuant to 6 NYCRR 621.3(a)(4). *Owners or operators* of *construction activities* that are required to obtain *UPA* permits must submit a preliminary SWPPP to the appropriate DEC Regional Office in Appendix F at the time all other necessary *UPA* permit applications are submitted. The preliminary SWPPP must include sufficient information to demonstrate that the *construction activity* qualifies for authorization under this permit,
 - c. the final SWPPP has been prepared, and
 - d. an NOI has been submitted to the Department in accordance with the requirements of this permit.
- 3. An *owner or operator* that has satisfied the requirements of Part II.B.2 above will be authorized to *discharge* stormwater from their *construction activity* in accordance with the following schedule:

(Part II. B. 3)

- a. For *construction activities* that are <u>not</u> subject to the requirements of a *regulated, traditional land use control MS4*:
 - i. Five (5) business days from the date the Department receives a complete NOI for *construction activities* with a SWPPP that has been prepared in conformance with the technical standards referenced in Parts III.B.1, 2 and/or 3, or
 - ii. Sixty (60) business days from the date the Department receives a complete NOI for *construction activities* with a SWPPP that has <u>not</u> been prepared in conformance with the technical standards referenced in Parts III.B.1, 2 or 3.
- b. For *construction activities* that are subject to the requirements of a *regulated, traditional land use control MS4*:
 - i. Five (5) business days from the date the Department receives a complete NOI and signed "MS4 SWPPP Acceptance" form,
- 4. The Department may suspend or deny an *owner's or operator's* coverage under this permit if the Department determines that the SWPPP does not meet the permit requirements.
- 5. Coverage under this permit authorizes stormwater *discharges* from only those areas of disturbance that are identified in the NOI. If an *owner or operator* wishes to have stormwater *discharges* from future or additional areas of disturbance authorized, they must submit a new NOI that addresses that phase of the development, unless otherwise notified by the Department.

C. General Requirements For Owners or Operators With Permit Coverage

- 1. The *owner or operator* shall ensure that the provisions of the SWPPP are implemented from the *commencement of construction activity* until all areas of disturbance have achieved *final stabilization* and the Notice of Termination (NOT) has been submitted to the Department in accordance with Part V. of this permit. This includes any changes made to the SWPPP pursuant to Part III.A.4.
- 2. The *owner or operator* shall maintain a copy of the General Permit (GP-0-10-001), NOI, *NOI Acknowledgment Letter*, SWPPP, MS4 SWPPP Acceptance form and inspection reports at the construction site until all disturbed areas have achieved *final stabilization* and the NOT has been submitted to the Department.

(Part II. C. 2)

The documents must be maintained in a secure location, such as a job trailer, on-site construction office, or mailbox with lock. The secure location must be accessible during normal business hours to an individual performing a compliance inspection.

- 3. The *owner or operator* of a *construction activity* shall not disturb greater than five (5) acres of soil at any one time without prior written authorization from the Department or, in areas under the jurisdiction of a *regulated*, *traditional land use control MS4*, the MS4 (provided the MS4 is not the *owner or operator* of the construction activity). At a minimum, the *owner or operator* must comply with the following requirements in order to be authorized to disturb greater than five (5) acres of soil at any one time:
 - a. The *owner or operator* shall have a *qualified inspector* conduct **at least** two (2) site inspections in accordance with Part IV.C. every seven (7) calendar days, for as long as greater than five (5) acres of soil remain disturbed. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
 - b. In areas where soil disturbance activity has been temporarily or permanently ceased, temporary and/or permanent soil stabilization measures shall be installed and/or implemented within seven (7) days from the date the soil disturbance activity ceased. The soil stabilization measures selected shall be in conformance with the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control.
 - c. The *owner or operator* shall prepare a phasing plan that defines maximum disturbed area per phase and shows required cuts and fills.
 - d. The *owner or operator* shall install any additional site specific practices needed to protect water quality.
 - e. The *owner or operator* shall include the requirements above in their SWPPP.
- 4. The Department may suspend or revoke an *owner's or operator's* coverage under this permit at any time if the Department determines that the SWPPP does not meet the permit requirements.

(Part II. C)

5. For *construction activities* that are subject to the requirements of a *regulated*, *traditional land use control MS4*, the *owner or operator* shall notify the *MS4* in writing of any planned amendments or modifications to the post-construction stormwater management practice component of the SWPPP required by Part III.A. 4. and 5. of this permit. Unless otherwise notified by the *MS4*, the *owner or operator* shall have the SWPPP amendments or modifications reviewed and accepted by the *MS4* prior to commencing construction of the post-construction stormwater management practice.

D. Permit Coverage for Discharges Authorized Under GP-0-08-001

1. Upon renewal of SPDES General Permit for Stormwater Discharges from Construction Activity (Permit No. GP-0-08-001), an owner or operator of construction activity with coverage under GP-0-08-001, as of the effective date of GP-0-10-001, shall be authorized to discharge in accordance with GP-0-10-001 unless otherwise notified by the Department.

E. Change of Owner or Operator

1. When property ownership changes or when there is a change in operational control over the construction plans and specifications, the original *owner or operator* must notify the new *owner or operator*, in writing, of the requirement to obtain permit coverage by submitting a NOI with the Department. Once the new *owner or operator* obtains permit coverage, the original *owner or operator* shall then submit a completed NOT with the name and permit identification number of the new *owner or operator* to the Department at the address in Part II.A.1.. If the original *owner or operator* maintains ownership of a portion of the *construction activity* and will disturb soil, they must maintain their coverage under the permit.

Permit coverage for the new *owner or operator* will be effective as of the date the Department receives a complete NOI, provided the original *owner or operator* was not subject to a sixty (60) business day authorization period that has not expired as of the date the Department receives the NOI from the new *owner or operator*.

Part III. STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

A. General SWPPP Requirements

1. The SWPPP shall be prepared prior to the submittal of the NOI. The NOI shall be submitted to the Department prior to the *commencement of construction activity*.

(Part III. A)

- 2. The SWPPP shall describe the erosion and sediment control practices and where required, post-construction stormwater management practices that will be used and/or constructed to reduce the pollutants in stormwater discharges and to assure compliance with the terms and conditions of this permit. In addition, the SWPPP shall identify potential sources of pollution which may reasonably be expected to affect the quality of stormwater discharges.
- 3. All SWPPs that require the post-construction stormwater management practice component shall be prepared by a *qualified professional* that is knowledgeable in the principles and practices of stormwater management and treatment.
- 4. The *owner or operator* must keep the SWPPP current so that it at all times accurately documents the erosion and sediment controls practices that are being used or will be used during construction, and all post-construction stormwater management practices that will be constructed on the site. At a minimum, the *owner or operator* shall amend the SWPPP:
 - a. whenever the current provisions prove to be ineffective in minimizing pollutants in stormwater *discharges* from the site;
 - b. whenever there is a change in design, construction, or operation at the construction site that has or could have an effect on the discharge of pollutants; and
 - c. to address issues or deficiencies identified during an inspection by the *qualified inspector*, the Department or other regulatory authority.
- 5. The Department may notify the *owner or operator* at any time that the SWPPP does not meet one or more of the minimum requirements of this permit. The notification shall be in writing and identify the provisions of the SWPPP that require modification. Within fourteen (14) calendar days of such notification, or as otherwise indicated by the Department, the *owner or operator* shall make the required changes to the SWPPP and submit written notification to the Department that the changes have been made. If the *owner or operator* does not respond to the Department's comments in the specified time frame, the Department may suspend the *owner's or operator's* coverage under this permit.
- 6. Prior to the *commencement of construction activity*, the *owner or operator* must identify the contractor(s) and subcontractor(s) that will be responsible for installing, constructing, repairing, replacing, inspecting and maintaining the erosion and sediment control practices included in the SWPPP; and the contractor(s) and subcontractor(s) that will be responsible for constructing the post-construction stormwater management practices included in the SWPPP.

(Part III. A. 6)

The *owner or operator* shall have each of the contractors and subcontractors identify at least one person from their company that will be responsible for implementation of the SWPPP. This person shall be known as the *trained contractor*. The *owner or operator* shall ensure that at least one *trained contractor* is on site on a daily basis when soil disturbance activities are being performed.

The *owner or operator* shall have each of the contractors and subcontractors identified above sign a copy of the following certification statement below before they commence any *construction activity*:

"I hereby certify that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the *qualified inspector* during a site inspection. I also understand that the *owner or operator* must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings."

In addition to providing the certification statement above, the certification page must also identify the specific elements of the SWPPP that each contractor and subcontractor will be responsible for and include the name and title of the person providing the signature; the name and title of the *trained contractor* responsible for SWPPP implementation; the name, address and telephone number of the contracting firm; the address (or other identifying description) of the site; and the date the certification statement is signed. The *owner or operator* shall attach the certification statement(s) to the copy of the SWPPP that is maintained at the construction site. If new or additional contractors are hired to implement measures identified in the SWPPP after construction has commenced, they must also sign the certification statement and provide the information listed above.

- 7. For projects where the Department requests a copy of the SWPPP or inspection reports, the *owner or operator* shall submit the documents in both electronic (PDF only) and paper format within five (5) business days, unless otherwise notified by the Department.
- 8. The SWPPP must include documentation supporting the determination of permit eligibility with regard to Part I.D.8. (Historic Places or Archeological Resource). At a minimum, the supporting documentation shall include the following:

(Part III. A. 8)

- a. Information on whether the stormwater discharge or *construction* activities would have an effect on a property (historic or archeological
 resource) that is listed or eligible for listing on the State or National
 Register of Historic Places;
- b. Results of historic resources screening determinations conducted. Information regarding the location of historic places listed, or eligible for listing, on the State or National Registers of Historic Places and areas of archeological sensitivity that may indicate the need for a survey can be obtained online by viewing the New York State Office of Parks, Recreation and Historic Places (OPRHP) online resources located on their web site at: http://nysparks.state.ny.us/shpo/online-tools/ (using The Geographic Information System for Archeology and National Register). OPRHP can also be contacted at: NYS OPRHP, State Historic Preservation Office, Peebles Island Resources Center, P.O. Box 189, Waterford, NY 12188-0189, phone: 518-237-8643;
- c. A description of measures necessary to avoid or minimize adverse impacts on places listed, or eligible for listing, on the State or National Register of Historic Places. If the *owner or operator* fails to describe and implement such measures, the stormwater *discharge* is ineligible for coverage under this permit; and
- d. Where adverse effects may occur, any written agreements in place with OPRHP or other governmental agency to mitigate those effects, or local land use approvals evidencing the same.

B. Required SWPPP Contents

- 1. Erosion and sediment control component All SWPPPs prepared pursuant to this permit shall include erosion and sediment control practices designed in conformance with the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control. Where erosion and sediment control practices are not designed in conformance with this technical standard, the *owner or operator* must demonstrate equivalence to the technical standard. At a minimum, the erosion and sediment control component of the SWPPP shall include the following:
 - a. Background information about the scope of the project, including the location, type and size of project;

(Part III. B. 1)

- b. A site map/construction drawing(s) for the project, including a general location map. At a minimum, the site map shall show the total site area; all improvements; areas of disturbance; areas that will not be disturbed; existing vegetation; on-site and adjacent off-site surface water(s), wetlands and drainage patterns that could be affected by the construction activity; existing and final slopes; locations of different soil types with boundaries; material, waste, borrow or equipment storage areas located on adjacent properties; and location(s) of the stormwater discharge(s);
- c. A description of the soil(s) present at the site, including an identification of the Hydrologic Soil Group (HSG);
- d. A construction phasing plan and sequence of operations describing the intended order of construction activities, including clearing and grubbing, excavation and grading, utility and infrastructure installation and any other activity at the site that results in soil disturbance;
- e. A description of the minimum erosion and sediment control practices to be installed or implemented for each construction activity that will result in soil disturbance. Include a schedule that identifies the timing of initial placement or implementation of each erosion and sediment control practice and the minimum time frames that each practice should remain in place or be implemented;
- f. A temporary and permanent soil stabilization plan that meets the requirements of the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, for each stage of the project, including initial land clearing and grubbing to project completion and achievement of final stabilization;
- g. A site map/construction drawing(s) showing the specific location(s), size(s), and length(s) of each erosion and sediment control practice;
- h. The dimensions, material specifications, installation details, and operation and maintenance requirements for all erosion and sediment control practices. Include the location and sizing of any temporary sediment basins and structural practices that will be used to divert flows from exposed soils;

(Part III. B. 1)

- i. A maintenance inspection schedule for the contractor(s) identified in Part III.A.6., to ensure continuous and effective operation of the erosion and sediment control practices. The maintenance inspection schedule shall be in accordance with the requirements in the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control;
- j. A description of the pollution prevention measures that will be used to control litter, construction chemicals and construction debris from becoming a pollutant source in the stormwater *discharges*;
- k. A description and location of any stormwater *discharges* associated with industrial activity other than construction at the site, including, but not limited to, stormwater *discharges* from asphalt plants and concrete plants located on the construction site; and
- Identification of any elements of the design that are not in conformance with the requirements in the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control. Include the reason for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is equivalent to the technical standards.
- 2. Post-construction stormwater management practice component All construction projects identified in Table 2 of Appendix B as needing post-construction stormwater management practices shall prepare a SWPPP that includes practices designed in conformance with the most current version of the technical standard, New York State Stormwater Management Design Manual ("Design Manual"). If the Design Manual is revised during the term of this permit, an *owner or operator* must begin using the revised version of the Design Manual to prepare their SWPPP six (6) months from the final revision date of the Design Manual.

Where post-construction stormwater management practices are not designed in conformance with this technical standard, the *owner or operator* must demonstrate equivalence to the technical standard.

At a minimum, the post-construction stormwater management practice component of the SWPPP shall include the following:

a. Identification of all post-construction stormwater management practices to be constructed as part of the project;

(Part III. B. 2)

- b. A site map/construction drawing(s) showing the specific location and size of each post-construction stormwater management practice;
- c. The dimensions, material specifications and installation details for each post-construction stormwater management practice;
- d. Identification of any elements of the design that are not in conformance with the Design Manual. Include the reason for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is equivalent to the technical standards;
- e. A hydrologic and hydraulic analysis for all structural components of the stormwater management control system;
- f. A detailed summary (including calculations) of the sizing criteria that was used to design all post-construction stormwater management practices. At a minimum, the summary shall address the required design criteria from the applicable chapter of the Design Manual; including the identification of and justification for any deviations from the Design Manual, and identification of any design criteria that are not required based on the design criteria or waiver criteria included in the Design Manual; and
- g. An operations and maintenance plan that includes inspection and maintenance schedules and actions to ensure continuous and effective operation of each post-construction stormwater management practice. The plan shall identify the entity that will be responsible for the long term operation and maintenance of each practice.
- 3. Enhanced Phosphorus Removal Standards All construction projects identified in Table 2 of Appendix B that are located in the watersheds identified in Appendix C shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the Enhanced Phosphorus Removal Standards included in the Design Manual. At a minimum, the post-construction stormwater management practice component of the SWPPP shall include items 2.a 2.g. above.

(Part III. C)

C. Required SWPPP Components by Project Type - Unless otherwise notified by the Department, owners or operators of construction activities identified in Table 1 of Appendix B are required to prepare a SWPPP that only includes erosion and sediment control practices designed in conformance with Part III.B.1. Owners or operators of the construction activities identified in Table 2 of Appendix B shall prepare a SWPPP that also includes post-construction stormwater management practices designed in conformance with Part III.B.2 or 3.

Part IV. INSPECTION AND MAINTENANCE REQUIREMENTS

A. General Construction Site Inspection and Maintenance Requirements

- 1. The *owner or operator* must ensure that all erosion and sediment control practices and all post-construction stormwater management practices identified in the SWPPP are maintained in effective operating condition at all times.
- 2. The terms of this permit shall not be construed to prohibit the State of New York from exercising any authority pursuant to the ECL, common law or federal law, or prohibit New York State from taking any measures, whether civil or criminal, to prevent violations of the laws of the State of New York, or protect the public health and safety and/or the environment.

B. Owner or Operator Maintenance Inspection Requirements

- 1. The *owner or operator* shall inspect, in accordance with the requirements in the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, the erosion and sediment controls identified in the SWPPP to ensure that they are being maintained in effective operating condition at all times.
- 2. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the *owner or operator* can stop conducting the maintenance inspections. The *owner or operator* shall begin conducting the maintenance inspections in accordance with Part IV.B.1. as soon as soil disturbance activities resume.
- 3. For construction sites where soil disturbance activities have been shut down with partial project completion, the *owner or operator* can stop conducting the maintenance inspections if all areas disturbed as of the project shutdown date have achieved *final stabilization* and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational.

(Part IV. C)

C. <u>Qualified Inspector Inspection Requirements</u> - The *owner or operator* shall have a *qualified inspector* conduct site inspections in conformance with the following requirements:

[Note: The *trained contractor* identified in Part III.A.6. **cannot** conduct the *qualified inspector* site inspections unless they meet the *qualified inspector* qualifications included in Appendix A. In order to perform these inspections, the *trained contractor* would have to be a:

- Licensed Professional Engineer,
- Certified Professional in Erosion and Sediment Control (CPESC),
- Registered Landscape Architect, or
- Someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity].
- 1. A *qualified inspector* shall conduct site inspections for all *construction activities* identified in Tables 1 and 2 of Appendix B, with the exception of:
 - a. the construction of a single family residential subdivision with 25% or less impervious cover at total site build-out that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;
 - b. the construction of a single family home that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;
 - c. construction on agricultural property that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres; and
 - d. construction activities located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land.
- 2. Unless otherwise notified by the Department, the *qualified inspector* shall conduct site inspections in accordance with the following timetable:
 - a. For construction sites where soil disturbance activities are on-going, the *qualified inspector* shall conduct a site inspection at least once every seven (7) calendar days.

(Part IV. C. 2)

- b. For construction sites where soil disturbance activities are on-going and the *owner or operator* has received authorization in accordance with Part II.C.3 to disturb greater than five (5) acres of soil at any one time, the *qualified inspector* shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- c. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the *qualified inspector* shall conduct a site inspection at least once every thirty (30) calendar days. The *owner or operator* shall notify the Regional Office stormwater contact person (see contact information in Appendix F) or, in areas under the jurisdiction of a *regulated*, *traditional land use control MS4*, the MS4 (provided the MS4 is not the *owner or operator* of the construction activity) in writing prior to reducing the frequency of inspections.
- d. For construction sites where soil disturbance activities have been shut down with partial project completion, the *qualified inspector* can stop conducting inspections if all areas disturbed as of the project shutdown date have achieved *final stabilization* and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational. The *owner or operator* shall notify the Regional Office stormwater contact person (see contact information in Appendix F) or, in areas under the jurisdiction of a regulated, traditional land use control MS4, the MS4 (provided the MS4 is not the owner or operator of the construction activity). in writing prior to the shutdown. If soil disturbance activities are not resumed within 2 years from the date of shutdown, the *owner or operator* shall have the *qualified inspector* perform a final inspection and certify that all disturbed areas have achieved *final stabilization*, and all temporary, structural erosion and sediment control measures have been removed; and that all postconstruction stormwater management practices have been constructed in conformance with the SWPPP by signing the "Final Stabilization" and "Post-Construction Stormwater Management Practice" certification statements on the NOT. The owner or operator shall then submit the completed NOT form to the address in Part II.A.1..

(Part IV. C. 3)

- 3. At a minimum, the *qualified inspector* shall inspect all erosion and sediment control practices to ensure integrity and effectiveness, all post-construction stormwater management practices under construction to ensure that they are constructed in conformance with the SWPPP, all areas of disturbance that have not achieved *final stabilization*, all points of discharge to natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site, and all points of discharge from the construction site.
- 4. The *qualified inspector* shall prepare an inspection report subsequent to each and every inspection. At a minimum, the inspection report shall include and/or address the following:
 - a. Date and time of inspection;
 - b. Name and title of person(s) performing inspection;
 - c. A description of the weather and soil conditions (e.g. dry, wet, saturated) at the time of the inspection;
 - d. A description of the condition of the runoff at all points of discharge from the construction site. This shall include identification of any discharges of sediment from the construction site. Include discharges from conveyance systems (i.e. pipes, culverts, ditches, etc.) and overland flow;
 - e. A description of the condition of all natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site which receive runoff from disturbed areas. This shall include identification of any *discharges* of sediment to the surface waterbody;
 - f. Identification of all erosion and sediment control practices that need repair or maintenance;
 - g. Identification of all erosion and sediment control practices that were not installed properly or are not functioning as designed and need to be reinstalled or replaced;
 - h. Description and sketch of areas that are disturbed at the time of the inspection and areas that have been stabilized (temporary and/or final) since the last inspection;

(Part IV. C 4)

- i. Current phase of construction of all post-construction stormwater management practices and identification of all construction that is not in conformance with the SWPPP and technical standards;
- j. Corrective action(s) that must be taken to install, repair, replace or maintain erosion and sediment control practices; and to correct deficiencies identified with the construction of the post-construction stormwater management practice(s); and
- k. Digital photographs, with date stamp, that clearly show the condition of all practices that have been identified as needing corrective actions. The *qualified inspector* shall attach paper color copies of the digital photographs to the inspection report being maintained onsite within seven (7) calendar days of the date of the inspection. The *qualified inspector* shall also take digital photographs, with date stamp, that clearly show the condition of the practice(s) after the corrective action has been completed. The *qualified inspector* shall attach paper color copies of the digital photographs to the inspection report that documents the completion of the corrective action work within seven (7) calendar days of that inspection.
- 5. Within one business day of the completion of an inspection, the *qualified inspector* shall notify the *owner or operator* and appropriate contractor or subcontractor identified in Part III.A.6. of any corrective actions that need to be taken. The contractor or subcontractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.
- 6. All inspection reports shall be signed by the *qualified inspector*. Pursuant to Part II.C.2., the inspection reports shall be maintained on site with the SWPPP.

Part V. TERMINATION OF PERMIT COVERAGE

A. Termination of Permit Coverage

- 1. An *owner or operator* that is eligible to terminate coverage under this permit must submit a completed NOT form to the address in Part II.A.1. The NOT form shall be one which is associated with this general permit, signed in accordance with Part VII.H.
- 2. An *owner or operator* may terminate coverage when one or more the following conditions have been met:

(Part V. A. 2)

- a. Total project completion All construction activity identified in the SWPPP has been completed; <u>and</u> all areas of disturbance have achieved final stabilization; <u>and</u> all temporary, structural erosion and sediment control measures have been removed; <u>and</u> all post-construction stormwater management practices have been constructed in conformance with the SWPPP and are operational;
- b. Planned shutdown with partial project completion All soil disturbance activities have ceased; <u>and</u> all areas disturbed as of the project shutdown date have achieved *final stabilization*; <u>and</u> all temporary, structural erosion and sediment control measures have been removed; <u>and</u> all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational;
- c. A new *owner or operator* has obtained coverage under this permit in accordance with Part II.E.
- 3. For *construction activities* meeting subdivision 2a. or 2b. of this Part, the *owner or operator* shall have the *qualified inspector* perform a final site inspection prior to submitting the NOT. The *qualified inspector* shall, by signing the "Final Stabilization" and "Post-Construction Stormwater Management Practice" certification statements on the NOT, certify that all disturbed areas have achieved *final stabilization*; and all temporary, structural erosion and sediment control measures have been removed; and that all post-construction stormwater management practices have been constructed in conformance with the SWPPP.
- 4. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4 and meet subdivision 2a. or 2b. of this Part, the owner or operator shall also have the MS4 sign the "MS4 Acceptance" statement on the NOT. The owner or operator shall have the principal executive officer, ranking elected official, or duly authorized representative from the regulated, traditional land use control MS4, sign the "MS4 Acceptance" statement. The MS4 official, by signing this statement, has determined that it is acceptable for the owner or operator to submit the NOT in accordance with the requirements of this Part. The MS4 can make this determination by performing a final site inspection themselves or by accepting the qualified inspector's final site inspection certification(s) required in Part V.3.
- 5. For *construction activities* that require post-construction stormwater management practices and meet subdivision 2a. of this Part, the *owner or operator* must, prior to submitting the NOT, ensure one of the following:

(Part V. A. 5)

- a. the post-construction stormwater management practice(s) and any right-of-way(s) needed to maintain such practice(s) have been deeded to the municipality in which the practice(s) is located,
- b. an executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s),
- c. for post-construction stormwater management practices that are privately owned, the *owner or operator* has modified their deed of record to include a deed covenant that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan,
- d. for post-construction stormwater management practices that are owned by a public or private institution (e.g. school, college, university), or government agency or authority, the *owner or operator* has policy and procedures in place that ensures operation and maintenance of the practices in accordance with the operation and maintenance plan.

Part VI. REPORTING AND RETENTION OF RECORDS

- **A.** <u>Record Retention</u> The *owner or operator* shall retain a copy of the NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form and any inspection reports that were prepared in conjunction with this permit for a period of at least five (5) years from the date that the site achieves *final stabilization*. This period may be extended by the Department, in its sole discretion, at any time upon written notification.
- **B.** <u>Addresses</u> With the exception of the NOI, NOT, and MS4 SWPPP Acceptance form (which must be submitted to the address referenced in Part II.A.1), all written correspondence requested by the Department, including individual permit applications, shall be sent to the address of the appropriate Department Regional Office listed in Appendix F.

Part VII. STANDARD PERMIT CONDITIONS

A. <u>Duty to Comply</u> - The *owner or operator* must comply with all conditions of this permit. All contractors and subcontractors associated with the project must comply with the terms of the SWPPP. Any non-compliance with this permit constitutes a violation of the Clean Water Act (CWA) and the ECL and is grounds for an enforcement action against the *owner or operator* and/or the contractor/subcontractor; permit revocation, suspension or modification; or denial of a permit renewal application. Upon a finding of significant non-compliance with this permit or the applicable SWPPP, the Department may order an immediate stop to all *construction activity* at the site until the non-compliance is remedied.

(Part VII. A)

The stop work order shall be in writing, shall describe the non-compliance in detail, and shall be sent to the *owner or operator*.

- **B.** <u>Continuation of the Expired General Permit</u> This permit expires five (5) years from the effective date. However, coverage may be obtained under the expired general permit, which will continue in force and effect, until a new general permit is issued. Unless otherwise notified by the Department in writing, an *owner or operator* seeking authorization under the new general permit must submit a new NOI in accordance with the terms of such new general permit.
- **C.** Enforcement Failure of the *owner or operator*, its contractors, subcontractors, agents and/or assigns to strictly adhere to any of the permit requirements contained herein shall constitute a violation of this permit. There are substantial criminal, civil, and administrative penalties associated with violating the provisions of this permit. Fines of up to \$37,500 per day for each violation and imprisonment for up to fifteen (15) years may be assessed depending upon the nature and degree of the offense.
- **D.** Need to Halt or Reduce Activity Not a Defense It shall not be a defense for an *owner* or operator in an enforcement action that it would have been necessary to halt or reduce the *construction activity* in order to maintain compliance with the conditions of this permit.
- **E.** <u>Duty to Mitigate</u> The *owner or operator* and its contractors and subcontractors shall take all reasonable steps to minimize or prevent any *discharge* in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.
- **F.** <u>Duty to Provide Information</u> The *owner or operator* shall make available to the Department for review and copying or furnish to the Department within five (5) business days of receipt of a Department request for such information, any information requested for the purpose of determining compliance with this permit. This can include, but is not limited to, the NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form, executed maintenance agreement, and inspection reports. Failure to provide information requested by the Department within the request timeframe shall be a violation of this permit.
- The NOI, SWPPP and inspection reports required by this permit are public documents that the *owner or operator* must make available for review and copying by any person within five (5) business days of the *owner or operator* receiving a written request by any such person to review the NOI, SWPPP or inspection reports. Copying of documents will be done at the requester's expense.
- **G.** <u>Other Information</u> When the *owner or operator* becomes aware that they failed to submit any relevant facts, or submitted incorrect information in the NOI or in any other report, or have made substantive revisions to the SWPPP (e.g. the scope of the project changes significantly, the type of post-construction stormwater management practice(s)

(Part VII. G)

changes, there is a reduction in the sizing of the post-construction stormwater management practice, or there is an increase in the disturbance area or impervious area), which were not reflected in the original NOI submitted to the Department, they shall promptly submit such facts or information to the Department. Failure of the *owner or operator* to correct or supplement any relevant facts within five (5) business days of becoming aware of the deficiency shall constitute a violation of this permit.

H. Signatory Requirements

- 1. All NOIs and NOTs shall be signed as follows:
 - a. For a corporation these forms shall be signed by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:
 - a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation; or
 - ii. the manager of one or more manufacturing, production or operating facilities, provided the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures;
 - b. For a partnership or sole proprietorship these forms shall be signed by a general partner or the proprietor, respectively; or
 - c. For a municipality, State, Federal, or other public agency these forms shall be signed by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal agency includes:
 - i. the chief executive officer of the agency, or

(Part VII. H. 1. c)

- ii. a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of EPA).
- 2. The SWPPP and other information requested by the Department shall be signed by a person described in Part VII.H.1. or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - a. The authorization is made in writing by a person described in Part VII.H.1.;
 - b. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position) and,
 - c. The written authorization shall include the name, title and signature of the authorized representative and be attached to the SWPPP.
- 3. All inspection reports shall be signed by the *qualified inspector* that performs the inspection.
- 4. The MS4 SWPPP Acceptance form shall be signed by the principal executive officer or ranking elected official from the *regulated*, *traditional land use control MS4*, or by a duly authorized representative of that person.
 - It shall constitute a permit violation if an incorrect and/or improper signatory authorizes any required forms, SWPPP and/or inspection reports.
- **I.** <u>Property Rights</u> The issuance of this permit does not convey any property rights of any sort, nor any exclusive privileges, nor does it authorize any injury to private property nor any invasion of personal rights, nor any infringement of Federal, State or local laws or regulations. *Owners or operators* must obtain any applicable conveyances, easements, licenses and/or access to real property prior to *commencing construction activity*.
- **J.** <u>Severability</u> The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

(Part VII. K)

K. Denial of Coverage Under This Permit

- 1. At its sole discretion, the Department may require any *owner or operator* authorized by this permit to apply for and/or obtain either an individual SPDES permit or another SPDES general permit. When the Department requires any discharger authorized by a general permit to apply for an individual SPDES permit, it shall notify the discharger in writing that a permit application is required. This notice shall include a brief statement of the reasons for this decision, an application form, a statement setting a time frame for the *owner or operator* to file the application for an individual SPDES permit, and a deadline, not sooner than 180 days from *owner or operator* receipt of the notification letter, whereby the authorization to discharge under this general permit shall be terminated. Applications must be submitted to the appropriate Regional Office. The Department may grant additional time upon demonstration, to the satisfaction of the Regional Water Engineer, that additional time to apply for an alternative authorization is necessary or where the Department has not provided a permit determination in accordance with Part 621 of this Title.
- 2. Any *owner or operator* authorized by this permit may request to be excluded from the coverage under this permit by applying for an individual permit or another general permit. In such cases, the *owner or operator* shall submit an individual application or an alternative general permit application in accordance with the requirements of this general permit, 40 CFR 122.26(c)(1)(ii) and 6 NYCRR Part 621, with reasons supporting the request, to the Department at the address for the appropriate Department Office (see addresses in Appendix F). The request may be granted by issuance of an individual permit or another general permit at the discretion of the Department.
- 3. When an individual SPDES permit is issued to a discharger authorized to discharge under a general SPDES permit for the same discharge(s), the general permit authorization for outfalls authorized under the individual SPDES permit is automatically terminated on the effective date of the individual permit unless termination is earlier in accordance with 6 NYCRR Part 750.
- **L.** <u>Proper Operation and Maintenance</u> The *owner or operator* shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the *owner or operator* to achieve compliance with the conditions of this permit and with the requirements of the SWPPP.
- **M.** <u>Inspection and Entry</u> The *owner or operator* shall allow the Department or an authorized representative of EPA, the State, or, in the case of a construction site which discharges through an *MS4*, an authorized representative of the *MS4* receiving the discharge, upon the presentation of credentials and other documents as may be required by law, to:

(Part VII. M)

- 1. Enter upon the *owner's or operator's* premises where a regulated facility or activity is located or conducted or where records must be kept under the conditions of this permit;
- 2. Have access to and copy at reasonable times, any records that must be kept under the conditions of this permit; and
- 3. Inspect at reasonable times any facilities or equipment (including monitoring and control equipment).
- **N.** <u>Permit Actions</u> At the Department's sole discretion, this permit may, at any time, be modified, suspended, revoked, or renewed. The filing of a request by the *owner or operator* for a permit modification, revocation and reissuance, termination, a notification of planned changes or anticipated noncompliance does not limit, diminish and/or stay compliance with any terms of this permit.
- **O.** <u>Definitions</u> Definitions of key terms are included in Appendix A of this permit.

P. Re-Opener Clause

- 1. If there is evidence indicating potential or realized impacts on water quality due to any stormwater discharge associated with *construction activity* covered by this permit, the *owner or operator* of such discharge may be required to obtain an individual permit or alternative general permit in accordance with Part VII.K. of this permit or the permit may be modified to include different limitations and/or requirements.
- 2. Permit modification, suspension or revocation will be conducted in accordance with 6 NYCRR Part 621, 6 NYCRR 750-1.18, and 6 NYCRR 750-1.20.
- **Q.** <u>Penalties for Falsification of Forms and Reports</u> Article 17 of the ECL provides for a civil penalty of \$37,500 per day per violation of this permit. Articles 175 and 210 of the New York State Penal Law provide for a criminal penalty of a fine and/or imprisonment for falsifying forms and reports required by this permit.
- **R.** Other Permits Nothing in this permit relieves the owner or operator from a requirement to obtain any other permits required by law.

APPENDIX A

Definitions

Alter Hydrology from Pre to Post-Development Conditions - means the post-development peak flow rate(s) has increased by more than 5% of the pre-developed condition for the design storm of interest (e.g. 10 yr and 100 yr).

Combined Sewer - means a sewer that is designed to collect and convey both "sewage" and "stormwater".

Commence (Commencement of) Construction Activities - means the initial disturbance of soils associated with clearing, grading or excavation activities; or other construction related activities that disturb or expose soils such as demolition, stockpiling of fill material, and the initial installation of erosion and sediment control practices required in the SWPPP. See definition for "Construction Activity(ies)" also.

Construction Activity(ies) - means any clearing, grading, excavation, filling, demolition or stockpiling activities that result in soil disturbance. Clearing activities can include, but are not limited to, logging equipment operation, the cutting and skidding of trees, stump removal and/or brush root removal. Construction activity does not include routine maintenance that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility.

Direct Discharge (to a specific surface waterbody) - means that runoff flows from a construction site by overland flow and the first point of discharge is the specific surface waterbody, or runoff flows from a construction site to a separate storm sewer system and the first point of discharge from the separate storm sewer system is the specific surface waterbody.

Discharge(s) - means any addition of any pollutant to waters of the State through an outlet or point source.

Environmental Conservation Law (ECL) - means chapter 43-B of the Consolidated Laws of the State of New York, entitled the Environmental Conservation Law.

Final Stabilization - means that all soil disturbance activities have ceased and a uniform, perennial vegetative cover with a density of eighty (80) percent over the entire pervious surface has been established; or other equivalent stabilization measures, such as permanent landscape mulches, rock rip-rap or washed/crushed stone have been applied on all disturbed areas that are not covered by permanent structures, concrete or pavement.

General SPDES permit - means a SPDES permit issued pursuant to 6 NYCRR Part 750-1.21 authorizing a category of discharges.

Groundwater - means waters in the saturated zone. The saturated zone is a subsurface zone in

which all the interstices are filled with water under pressure greater than that of the atmosphere. Although the zone may contain gas-filled interstices or interstices filled with fluids other than water, it is still considered saturated.

Impervious Area (Cover) - means all impermeable surfaces that cannot effectively infiltrate rainfall. This includes paved, concrete and gravel surfaces (i.e. parking lots, driveways, roads, runways and sidewalks); building rooftops and miscellaneous impermeable structures such as patios, pools, and sheds.

Larger Common Plan of Development or Sale - means a contiguous area where multiple separate and distinct construction activities are occurring, or will occur, under one plan. The term "plan" in "larger common plan of development or sale" is broadly defined as any announcement or piece of documentation (including a sign, public notice or hearing, marketing plan, advertisement, drawing, permit application, State Environmental Quality Review Act (SEQRA) application, zoning request, computer design, etc.) or physical demarcation (including boundary signs, lot stakes, surveyor markings, etc.) indicating that construction activities may occur on a specific plot.

For discrete construction projects that are located within a larger common plan of development or sale that are at least 1/4 mile apart, each project can be treated as a separate plan of development or sale provided any interconnecting road, pipeline or utility project that is part of the same "common plan" is not concurrently being disturbed.

Municipal Separate Storm Sewer (MS4) - a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains):

- i. Owned or operated by a State, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law) having jurisdiction over disposal of sewage, industrial wastes, stormwater, or other wastes, including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the CWA that discharges to surface waters of the State;
- ii. Designed or used for collecting or conveying stormwater;
- iii. Which is not a combined sewer; and
- iv. Which is not part of a Publicly Owned Treatment Works (POTW) as defined at 40 CFR 122.2.

National Pollutant Discharge Elimination System (NPDES) - means the national system for the issuance of wastewater and stormwater permits under the Federal Water Pollution Control Act (Clean Water Act).

NOI Acknowledgment Letter - means the letter that the Department sends to an owner or operator to acknowledge the Department's receipt and acceptance of a complete Notice of Intent. This letter documents the owner's or operator's authorization to discharge in accordance with the general permit for stormwater discharges from construction activity.

Owner or Operator - means the person, persons or legal entity which owns or leases the property on which the construction activity is occurring; and/or an entity that has operational control over the construction plans and specifications, including the ability to make modifications to the plans and specifications.

Pollutant - means dredged spoil, filter backwash, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand and industrial, municipal, agricultural waste and ballast discharged into water; which may cause or might reasonably be expected to cause pollution of the waters of the state in contravention of the standards or guidance values adopted as provided in Parts 700 et seq of this Title.

Qualified Inspector - means a person that is knowledgeable in the principles and practices of erosion and sediment control, such as a licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, or other Department endorsed individual(s).

It can also mean someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided that person has training in the principles and practices of erosion and sediment control. Training in the principles and practices of erosion and sediment control means that the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect has received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect shall receive four (4) hours of training every three (3) years.

It can also mean a person that meets the *Qualified Professional* qualifications in addition to the *Qualified Inspector* qualifications.

Note: Inspections of any post-construction stormwater management practices that include structural components, such as a dam for an impoundment, shall be performed by a licensed Professional Engineer.

Qualified Professional - means a person that is knowledgeable in the principles and practices of stormwater management and treatment, such as a licensed Professional Engineer, Registered Landscape Architect or other Department endorsed individual(s). Individuals preparing SWPPPs that require the post-construction stormwater management practice component must have an understanding of the principles of hydrology, water quality management practice design, water quantity control design, and, in many cases, the principles of hydraulics in order to prepare a SWPPP that conforms to the Department's technical standard. All components of the SWPPP that involve the practice of engineering, as defined by the NYS Education Law (see Article 145), shall be prepared by, or under the direct supervision of, a professional engineer licensed to practice in the State of New York.

Regulated, Traditional Land Use Control MS4 - means a city, town or village with land use control authority that is required to gain coverage under New York State DEC's SPDES General Permit For Stormwater Discharges from Municipal Separate Stormwater Sewer Systems (MS4s).

Routine Maintenance Activity - means construction activity that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility, including, but not limited to:

- Re-grading of gravel roads or parking lots,
- Stream bank restoration projects (does not include the placement of spoil material),
- Cleaning and shaping of existing roadside ditches and culverts that maintains the approximate original line and grade, and hydraulic capacity of the ditch,
- Cleaning and shaping of existing roadside ditches that does not maintain the approximate original grade, hydraulic capacity and purpose of the ditch if the changes to the line and grade, hydraulic capacity or purpose of the ditch are installed to improve water quality and quantity controls (e.g. installing grass lined ditch),
- Placement of aggregate shoulder backing that makes the transition between the road shoulder and the ditch or embankment,
- Full depth milling and filling of existing asphalt pavements, replacement of concrete pavement slabs, and similar work that does not expose soil or disturb the bottom six (6) inches of subbase material,
- Long-term use of equipment storage areas at or near highway maintenance facilities,
- Removal of sediment from the edge of the highway to restore a previously existing sheet-flow drainage connection from the highway surface to the highway ditch or embankment,
- Existing use of Canal Corp owned upland disposal sites for the canal, and
- Replacement of curbs, gutters, sidewalks and guide rail posts.

State Pollutant Discharge Elimination System (SPDES) - means the system established pursuant to Article 17 of the ECL and 6 NYCRR Part 750 for issuance of permits authorizing discharges to the waters of the state.

Surface Waters of the State - shall be construed to include lakes, bays, sounds, ponds, impounding reservoirs, springs, rivers, streams, creeks, estuaries, marshes, inlets, canals, the Atlantic ocean within the territorial seas of the state of New York and all other bodies of surface water, natural or artificial, inland or coastal, fresh or salt, public or private (except those private waters that do not combine or effect a junction with natural surface or underground waters), which are wholly or partially within or bordering the state or within its jurisdiction. Waters of the state are further defined in 6 NYCRR Parts 800 to 941.

Temporary Stabilization - means that exposed soil has been covered with material(s) as set forth in the technical standard, New York Standards and Specifications for Erosion and Sediment Control, to prevent the exposed soil from eroding. The materials can include, but are not limited to, mulch, seed and mulch, and erosion control mats (e.g. jute twisted yarn, excelsior wood fiber mats).

Total Maximum Daily Loads (TMDLs) - A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources. It is a calculation of the maximum amount of a pollutant that a waterbody can receive on a daily basis and still meet water quality standards, and an allocation of that amount to the pollutant's sources. A TMDL stipulates wasteload allocations (WLAs) for point source discharges, load allocations (LAs) for nonpoint sources, and a margin of safety (MOS).

Trained Contractor - means an employee from the contracting (construction) company, identified in Part III.A.6., that has received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the *trained contractor* shall receive four (4) hours of training every three (3) years.

It can also mean an employee from the contracting (construction) company, identified in Part III.A.6., that meets the *qualified inspector* qualifications (e.g. licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, or someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity).

The *trained contractor* will be responsible for the day to day implementation of the SWPPP.

Uniform Procedures Act (UPA) Permit - means a permit required under 6 NYCRR Part 621 of the Environmental Conservation Law (ECL), Article 70.

Water Quality Standard - means such measures of purity or quality for any waters in relation to their reasonable and necessary use as promulgated in 6 NYCRR Part 700 et seq.

APPENDIX B

Required SWPPP Components by Project Type

Table 1 CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT ONLY INCLUDES EROSION AND SEDIMENT CONTROLS

The following construction activities that involve soil disturbances of one (1) or more acres of land, but less than five (5) acres:

- Single family home <u>not</u> located in one of the watersheds listed in Appendix C and <u>not</u> *directly discharging* to one of the 303(d) segments listed in Appendix E
- Single family residential subdivisions with 25% or less impervious cover at total site build-out and <u>not</u> located in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E
- Construction of a barn or other agricultural building, silo, stock yard or pen.

The following construction activities that involve soil disturbances of one (1) or more acres of land:

- Installation of underground, linear utilities; such as gas lines, fiber-optic cable, cable TV, electric, telephone, sewer mains, and water mains
- Environmental enhancement projects, such as wetland mitigation projects, stormwater retrofits and stream restoration projects
- Bike paths and trails
- Sidewalk construction projects that are not part of a road/ highway construction or reconstruction project
- Slope stabilization projects
- Slope flattening that changes the grade of the site, but does not significantly change the runoff characteristics
- Spoil areas that will be covered with vegetation
- Land clearing and grading for the purposes of creating vegetated open space (i.e. recreational parks, lawns, meadows, fields), excluding projects that *alter hydrology from pre to post development* conditions
- Athletic fields (natural grass) that do not include the construction or reconstruction of *impervious area* and do not alter hydrology from pre to post development conditions
- Demolition project where vegetation will be established and no redevelopment is planned
- Overhead electric transmission line project that does not include the construction of permanent access roads or parking areas surfaced with *impervious cover*
- Structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State", excluding projects that involve soil disturbances of less than five acres and construction activities that include the construction or reconstruction of impervious area

The following construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land:

• All construction activities located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land.

Table 2

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT INCLUDES POST-CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

The following construction activities that involve soil disturbances of one (1) or more acres of land:

- Single family home located in one of the watersheds listed in Appendix C or *directly discharging* to one of the 303(d) segments listed in Appendix E
- Single family residential subdivisions located in one of the watersheds listed in Appendix C or *directly discharging* to one of the 303(d) segments listed in Appendix E
- Single family residential subdivisions that involve soil disturbances of between one (1) and five (5) acres of land with greater than 25% impervious cover at total site build-out
- Single family residential subdivisions that involve soil disturbances of five (5) or more acres of land, and single family residential subdivisions that involve soil disturbances of less than five (5) acres that are part of a larger common plan of development or sale that will ultimately disturb five or more acres of land
- Multi-family residential developments; includes townhomes, condominiums, senior housing complexes, apartment complexes, and mobile home parks
- Airports
- Amusement parks
- Campgrounds
- Cemeteries that include the construction or reconstruction of impervious area (>5% of disturbed area) or *alter the hydrology from pre to post development* conditions
- Commercial developments
- Churches and other places of worship
- Construction of a barn or other agricultural building(e.g. silo) and structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State" that include the construction or reconstruction of *impervious area*, excluding projects that involve soil disturbances of less than five acres.
- Golf courses
- Institutional, includes hospitals, prisons, schools and colleges
- Industrial facilities, includes industrial parks
- Landfills
- Municipal facilities; includes highway garages, transfer stations, office buildings, POTW's and water treatment plants
- Office complexes
- Sports complexes
- Racetracks, includes racetracks with earthen (dirt) surface
- Road construction or reconstruction
- Parking lot construction or reconstruction
- Athletic fields (natural grass) that include the construction or reconstruction of impervious area (>5% of disturbed area) or *alter the hydrology from pre to post development* conditions
- Athletic fields with artificial turf
- Permanent access roads, parking areas, substations, compressor stations and well drilling pads, surfaced with *impervious cover*, and constructed as part of an over-head electric transmission line project, wind-power project, cell tower project, oil or gas well drilling project or other linear utility project
- All other construction activities that include the construction or reconstruction of *impervious area* and alter the hydrology from pre to post development conditions, and are not listed in Table 1

APPENDIX C

Watersheds Where Enhanced Phosphorus Removal Standards Are Required

Watersheds where *owners or operators* of construction activities identified in Table 2 of Appendix B must prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the Enhanced Phosphorus Removal Standards included in the technical standard, New York State Stormwater Management Design Manual ("Design Manual").

- Entire New York City Watershed located east of the Hudson River Figure 1
- Onondaga Lake Watershed Figure 2
- Greenwood Lake Watershed -Figure 3
- Oscawana Lake Watershed Figure 4

Figure 1 - New York City Watershed East of the Hudson

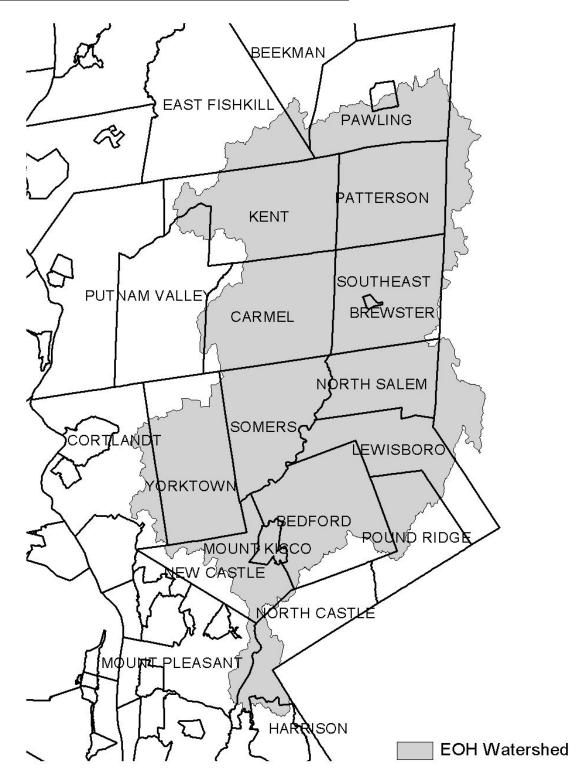


Figure 2 - Onondaga Lake Watershed

Figure 3 - Greenwood Lake Watershed

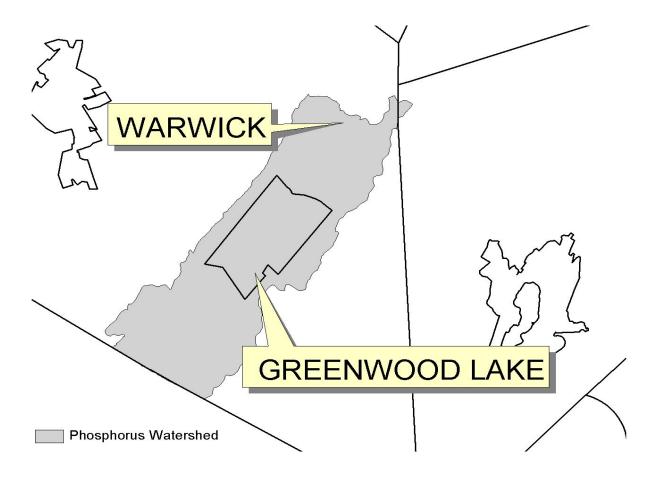
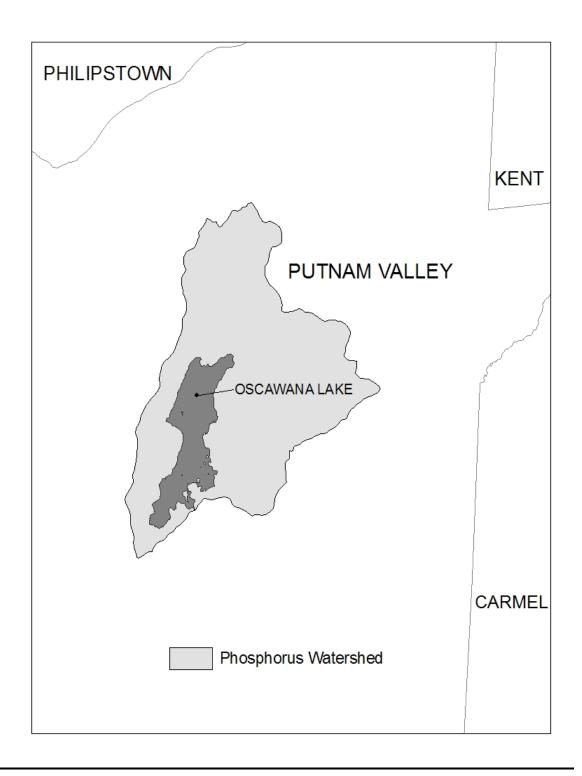



Figure 4 - Oscawana Lake Watershed

APPENDIX D

Watersheds where *owners or operators* of construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land must obtain coverage under this permit.

Entire New York City Watershed that is located east of the Hudson River - See Figure 1 in Appendix C

APPENDIX E

List of 303(d) segments impaired by pollutants related to construction activity (e.g. silt, sediment or nutrients). *Owners or operators* of single family home and single family residential subdivision construction activities that involve soil disturbances of one or more acres of land, but less than 5 acres, and *directly discharge* to one of the listed segments below shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the most current version of the technical standard, New York State Stormwater Management Design Manual ("Design Manual").

COUNTY	WATERBODY	COUNTY	WATERBODY
Albany	Ann Lee (Shakers) Pond, Stump Pond	Monroe	Genesee River, Lower, Main Stem
Albany	Basic Creek Reservoir	Monroe	Genesee River, Middle, Main Stem
Bronx	Van Cortlandt Lake	Monroe	Black Creek, Lower, and minor tribs
Broome	Whitney Point Lake/Reservoir	Monroe	Buck Pond
Broome	Beaver Lake	Monroe	Long Pond
Broome	White Birch Lake	Monroe	Cranberry Pond
Chautaugua	Chautauqua Lake, North	Monroe	Mill Creek and tribs
Chautauqua	Chautauqua Lake, South	Monroe	Shipbuilders Creek and tribs
Chautauqua	Bear Lake	Monroe	Minor tribs to Irondequoit Bay
Chautauqua	Chadakoin River and tribs	Monroe	Thomas Creek/White Brook and tribs
Chautauqua	Lower Cassadaga Lake	Nassau	Glen Cove Creek, Lower, and tribs
Chautauqua	Middle Cassadaga Lake	Nassau	LI Tribs (fresh) to East Bay
Chautauqua	Findley Lake	Nassau	East Meadow Brook, Upper, and tribs
Clinton	Great Chazy River, Lower, Main Stem	Nassau	Hempstead Bay
Columbia	Kinderhook Lake	Nassau	Hempstead Lake
Columbia	Robinson Pond	Nassau	Grant Park Pond
Dutchess	Hillside Lake	Niagara	Bergholtz Creek and tribs
Dutchess	Wappinger Lakes	Oneida	Ballou, Nail Creeks
Dutchess	Fall Kill and tribs	Onondaga	Ley Creek and tribs
Dutchess	Rudd Pond	Onondaga	Onondaga Creek, Lower and tribs
Erie	Rush Creek and tribs	Onondaga	Onondaga creek, Middle and tribs
Erie	Ellicott Creek, Lower, and tribs	Onondaga	Onondaga Creek, Upper, and minor tribs
Erie	Beeman Creek and tribs	Onondaga	Harbor Brook, Lower, and tribs
Erie	Murder Creek, Lower, and tribs	Onondaga	Ninemile Creek, Lower, and tribs
Erie	South Branch Smoke Cr, Lower, and tribs	Onondaga	Minor tribs to Onondaga Lake
Erie	Little Sister Creek, Lower, and tribs	Ontario	Honeoye Lake
Essex	Lake George (primary county listed as Warren)	Ontario	Hemlock Lake Outlet and minor tribs
Genesee	Black Creek, Upper, and minor tribs	Ontario	Great Brook and minor tribs
Genesee	Tonawanda Creek, Middle, Main Stem	Oswego	Lake Neatahwanta
Genesee	Tonawanda Creek, Upper, and minor tribs	Putnam	Oscawana Lake
Genesee	Little Tonawanda Creek, Lower, and tribs	Putnam	Lake Carmel
Genesee	Oak Orchard Creek, Upper, and tribs	Queens	Jamaica Bay, Eastern, and tribs (Queens)
Genesee	Bowen Brook and tribs	Queens	Bergen Basin
Genesee	Bigelow Creek and tribs	Queens	Shellbank Basin
Greene	Schoharie Reservoir	Rensselaer	Snyders Lake
Greene	Sleepy Hollow Lake	Richmond	Grasmere, Arbutus and Wolfes Lakes
Herkimer	Steele Creek tribs	Saratoga	Dwaas Kill and tribs
Kings	Hendrix Creek	Saratoga	Tribs to Lake Lonely
Lewis	Mill Creek/South Branch and tribs	Saratoga	Lake Lonely
Livingston	Conesus Lake	Saratoga	Schuyler Creek and tribs
Livingston	Jaycox Creek and tribs	Schenectady	Collins Lake
Livingston	Mill Creek and minor tribs		

APPENDIX E

List of 303(d) segments impaired by pollutants related to construction activity, cont'd.

COUNTY	WATERBODY	COUNTY	WATERBODY
Schoharie	Engleville Pond		
Schoharie	Summit Lake		
St. Lawrence	Black Lake Outlet/Black Lake		
Steuben	Lake Salubria		
Steuben	Smith Pond		
Suffolk	Millers Pond		
Suffolk	Mattituck (Marratooka) Pond		
Suffolk	Tidal tribs to West Moriches Bay		
Suffolk	Canaan Lake		
Suffolk	Lake Ronkonkoma		
Tompkins	Cayuga Lake, Southern End		
Tompkins	Owasco Inlet, Upper, and tribs		
Ulster	Ashokan Reservoir		
Ulster	Esopus Creek, Upper, and minor tribs		
Warren	Lake George		
Warren	Tribs to L.George, Village of L George		
Warren	Huddle/Finkle Brooks and tribs		
Warren	Indian Brook and tribs		
Warren	Hague Brook and tribs		
Washington	Tribs to L.George, East Shore of Lake George		
Washington	Cossayuna Lake		
Wayne	Port Bay		
Wayne	Marbletown Creek and tribs		
Westchester	Peach Lake		
Westchester	Mamaroneck River, Lower		
Westchester	Mamaroneck River, Upper, and minor tribs		
Westchester	Sheldrake River and tribs		
Westchester	Blind Brook, Lower		
Westchester	Blind Brook, Upper, and tribs		
Westchester	Lake Lincolndale		
Westchester	Lake Meahaugh		
Wyoming	Java Lake		
Wyoming	Silver Lake		

Note: The list above identifies those waters from the final New York State "2008 Section 303(d) List of Impaired Waters Requiring a TMDL/Other Strategy", dated May 26, 2008, that are impaired by silt, sediment or nutrients.

APPENDIX F

LIST OF NYS DEC REGIONAL OFFICES

Region	COVERING THE FOLLOWING COUNTIES:	DIVISION OF ENVIRONMENTAL PERMITS (DEP) PERMIT ADMINISTRATORS	DIVISION OF WATER (DOW) WATER (SPDES) PROGRAM
1	NASSAU AND SUFFOLK	50 CIRCLE ROAD STONY BROOK, NY 11790 TEL. (631) 444-0365	50 CIRCLE ROAD STONY BROOK, NY 11790-3409 TEL. (631) 444-0405
2	BRONX, KINGS, NEW YORK, QUEENS AND RICHMOND	1 HUNTERS POINT PLAZA, 47-40 21ST ST. LONG ISLAND CITY, NY 11101-5407 TEL. (718) 482-4997	1 HUNTERS POINT PLAZA, 47-40 21st St. LONG ISLAND CITY, NY 11101-5407 TEL. (718) 482-4933
3	DUTCHESS, ORANGE, PUTNAM, ROCKLAND, SULLIVAN, ULSTER AND WESTCHESTER	21 SOUTH PUTT CORNERS ROAD NEW PALTZ, NY 12561-1696 TEL. (845) 256-3059	100 HILLSIDE AVENUE, SUITE 1W WHITE PLAINS, NY 10603 TEL. (914) 428 - 2505
4	ALBANY, COLUMBIA, DELAWARE, GREENE, MONTGOMERY, OTSEGO, RENSSELAER, SCHENECTADY AND SCHOHARIE	1150 NORTH WESTCOTT ROAD SCHENECTADY, NY 12306-2014 TEL. (518) 357-2069	1130 NORTH WESTCOTT ROAD SCHENECTADY, NY 12306-2014 TEL. (518) 357-2045
5	CLINTON, ESSEX, FRANKLIN, FULTON, HAMILTON, SARATOGA, WARREN AND WASHINGTON	1115 STATE ROUTE 86, PO BOX 296 RAY BROOK, NY 12977-0296 TEL. (518) 897-1234	232 GOLF COURSE ROAD, PO BOX 220 WARRENSBURG, NY 12885-0220 TEL. (518) 623-1200
6	HERKIMER, JEFFERSON, LEWIS, ONEIDA AND ST. LAWRENCE	STATE OFFICE BUILDING 317 WASHINGTON STREET WATERTOWN, NY 13601-3787 TEL. (315) 785-2245	STATE OFFICE BUILDING 207 GENESEE STREET UTICA, NY 13501-2885 TEL. (315) 793-2554
7	BROOME, CAYUGA, CHENANGO, CORTLAND, MADISON, ONONDAGA, OSWEGO, TIOGA AND TOMPKINS	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7438	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7500
8	CHEMUNG, GENESEE, LIVINGSTON, MONROE, ONTARIO, ORLEANS, SCHUYLER, SENECA, STEUBEN, WAYNE AND YATES	6274 EAST AVON-LIMA ROAD AVON, NY 14414-9519 TEL. (585) 226-2466	6274 EAST AVON-LIMA RD. AVON, NY 14414-9519 TEL. (585) 226-2466
9	ALLEGANY, CATTARAUGUS, CHAUTAUQUA, ERIE, NIAGARA AND WYOMING	270 MICHIGAN AVENUE BUFFALO, NY 14203-2999 TEL. (716) 851-7165	270 MICHIGAN AVE. BUFFALO, NY 14203-2999 TEL. (716) 851-7070

FACT SHEET

For

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES

from

CONSTRUCTION ACTIVITY

Permit No. GP-0-10-001

Issued Pursuant to Article 17, Titles 7, 8 and Article 70 of the Environmental Conservation Law

January 2010

Introduction

The New York State Department of Environmental Conservation (NYSDEC) has prepared the new SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-10-001). The new permit is effective on January 29, 2010. This general permit replaces the SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-08-001).

The SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-10-001) is a five (5) year permit that covers discharges of stormwater to surface waters of the State from construction activities as defined in 40 CFR Part 122.26(b)(14)(x) and (b)(15)(i - ii).

Pursuant to Section 402 of the Clean Water Act ("CWA"), stormwater discharges from certain construction activities (including discharges through a municipal separate storm sewer system) are unlawful unless they are authorized by a National Pollutant Discharge Elimination System (NPDES) permit or by a state permit program. New York's State Pollutant Discharge Elimination System (SPDES) is a NPDES-approved program with permits issued in accordance with the Environmental Conservation Law ("ECL"). An owner or operator of a construction activity must obtain permit coverage through either an individual SPDES permit which address the stormwater discharges or obtain coverage under the SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-10-001) prior to the commencement of construction activity.

Updates to the New York State Stormwater Management Design Manual (Design Manual)

One of the foundations of the New York State Stormwater program is the technical standards for stormwater controls. Along the same timeline as renewal of the stormwater permits, the NYSDEC is updating the Design Manual to include green infrastructure techniques. When the Design Manual is updated, an owner or operator of a construction activity that needs post-construction stormwater management practices will be required to prepare a SWPPP that includes practices designed in conformance with or equivalent to the updated Design Manual.

The increased emphasis on a holistic approach to resource protection, water quality treatment, flow volume control, maintenance cost reduction, and the dynamics of stormwater science has led to several changes in stormwater management. Carrying out stormwater management design standards for the past few years has provided the regulatory agencies, regulated entities, and design community with valuable experiences and a body of knowledge to enhance and improve urban runoff planning, methodologies, and techniques towards implementation of green infrastructure.

The term green infrastructure, previously used to describe specific water quality management practices, has expanded in recent years to include a wide array of practices at multiple scales to manage, reduce, and treat stormwater and maintain and restore natural

hydrology by infiltration, evapotranspiration, and capture and reuse of stormwater. On a regional scale, green infrastructure is the preservation and restoration of natural landscape features, such as forests, floodplains and wetlands, coupled with policies such as infill and redevelopment that reduce overall imperviousness in a watershed. On the local scale green infrastructure consists of site- and neighborhood-specific practices, such as bioretention, trees, green roofs, porous pavements and cisterns.

The value of runoff reduction by non-structural stormwater control practices or green infrastructure techniques is increasingly recognized as a critical feature for environmentally-sound development. In addition, runoff reduction through this approach can directly translate into cost savings to the developer by reducing the size of structural stormwater control and conveyance facilities. The Design Manual will provide developers and site designers with a step by step approach to implement green infrastructure practices that can reduce the volume of stormwater runoff, minimize pollutant loads from a site, and allow a development project to meet New York State's criteria simply through a more innovative site design.

The green infrastructure approach for stormwater management reduces a site's impact on the aquatic ecosystem through the use of non-structural site planning and innovative techniques. The objective is to replicate pre-development hydrology by maintaining pre-construction infiltration, peak runoff flow, discharge volume, as well as minimizing concentrated flow by using runoff control techniques to provide treatment in a distributed manner before runoff reaches the waterways or the collection system. This approach offers a distinct advantage over conventional "hard" stormwater infrastructure by reducing the production of runoff and the need for collection, storage, and treatment.

Planners and designers must address this approach in a five-step process for stormwater site planning and practice selection in the SWPPP: site planning to preserve natural features and reduce impervious cover, calculation of water quality volume for the site, calculation of runoff reduction volume by applying green infrastructure techniques, use of standard treatment practices where applicable, and finally calculation of volume and peak discharge control practices where required. (See the fourth bulleted item - *SWPPP Preparation In Conformance With Updated Design Manual* under the "Other Permit Revisions" section below)

Major Permit Revision

The Department made only one major change in this general permit compared to the previous version of the general permit (GP-0-08-001). The major change involves construction projects located in the Oscawana Lake Watershed that are required to develop a SWPPP that includes post-construction stormwater management practices (See Table 2 in Appendix B). Under the new general permit, the owner or operator of these construction activities will be required to prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the Enhanced Phosphorus Removal Standards included in the Design Manual (See Chapter 10).

Other Permit Revisions

Some of the other more significant changes with GP-0-10-001 include:

• <u>Duty To Provide Information</u> - The following language from GP-02-01 has been placed back in this permit (GP-0-10-001). The language deals with an owner or operator making certain permit documentation available to a requester. The language is located in Part VII.F. and referenced in Part II.A.4.

"The NOI, SWPPP and inspection reports required by this permit are public documents that the owner or operator must make available for review and copying by any person within five (5) business days of the owner or operator receiving a written request by any such person to review the NOI, SWPPP or inspection reports. Copying of documents will be done at the requester's expense."

Interested parties are reminded that the information supplied by an owner or operator in the Notice of Intent can be viewed on the Department's Stormwater Interactive Map. The link for the Stormwater Interactive Map is: http://www.dec.ny.gov/imsmaps/stormwater/viewer.htm

- <u>Keeping The SWPPP Current</u> Part III.A.4 has been revised to provide additional clarification as to when an owner or operator must have their SWPPP preparer amend or update their SWPPP. The majority of the language added to this requirement was included in GP-02-01.
- MS4 Notification of SWPPP Amendments Part II.C.5. requires the owner or operator of a construction activity that is subject to the requirements of a regulated, traditional land use control MS4 to notify the MS4 in writing of any planned amendments or modifications to the post-construction stormwater management practice component of the SWPPP required by Part III.A. 4. and 5.of this permit. Unless otherwise notified by the MS4, the owner or operator shall have the SWPPP amendments or modifications reviewed and accepted by the MS4 prior to commencing construction of the post-construction stormwater management practice.
- SWPPP Preparation In Conformance With Updated Design Manual Part III.B.2. has been revised to include a transition period for when an owner or operator would be required to prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with updates to the New York State Stormwater Management Design Manual (Design Manual). When the Design Manual is revised during the term of the general permit, an owner or operator must begin using the revised version of the Design Manual to prepare their SWPPP six (6) months from the final revision date of the Design Manual. Owners or operators are allowed, but not required to use the updated Design Manual starting on the final revision date.

Pursuant to 6 NYCRR Part 750-1.21(d)(2), an owner or operator of a construction activity with coverage under the existing SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-08-001) as of the effective date of GP-0-10-001 shall be automatically permitted to discharge in accordance with GP-0-10-001 unless otherwise notified by the Department. These owners or operators may continue to implement the technical/design components of the SWPPP that was developed in accordance with the requirements of GP-0-08-001. However, they will be subject to the other, non-design provisions of the new general permit, GP-0-10-001.

- Additional Qualified Inspector Inspections Requirements Part IV.C.3. has been revised
 to require the qualified inspector to inspect all points of discharge to natural surface
 waterbodies located within, or immediately adjacent to, the property boundaries of the
 construction site.
- <u>Additional Qualified Inspector Reporting Requirements</u> Part IV.C.4. has been revised to require the qualified inspector to provide a description of the condition of all points of discharge to natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site which receive runoff from disturbed areas.
 - In addition, a requirement has been added to Part IV.C.4 that requires the qualified inspector to take digital photographs of the practices that have been identified as needing corrective actions. The *qualified inspector* is required to attach paper color copies of the digital photographs to the inspection report being maintained onsite within seven (7) calendar days of the date of the inspection. The *qualified inspector* is also required to take digital photographs, with date stamp, which show the condition of the practice(s) after the corrective action has been completed. The *qualified inspector* is required to attach paper color copies of the digital photographs to the inspection report that documents the completion of the corrective action work within seven (7) calendar days of that inspection.
- Final Sign Off by MS4 Prior to Filing Notice of Termination (NOT) Part V.A.4. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4, the owner or operator is required to have the MS4 sign the "MS4 Acceptance" statement on the NOT. The owner or operator shall have the principal executive officer, ranking elected official, or duly authorized representative from the regulated, traditional land use control MS4, sign the "MS4 Acceptance" statement. The MS4 official, by signing this statement, has determined that it is acceptable for the owner or operator to submit the NOT in accordance with the requirements of the permit. The MS4 can make this determination by performing a final site inspection themselves or by accepting the qualified inspector's final site inspection certification(s) required by the permit.

Other Helpful Information and Important Reminders

 An owner or operator of a construction activity that is eligible for coverage under the SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-10001) must obtain coverage under the permit prior to the commencement of construction activity. They cannot wait until there is an actual discharge from the construction site to obtain permit coverage.

This requirement comes from Section 17-0505 of the ECL which states "The <u>making</u> or use <u>of an outlet or point source</u> discharging into the waters of the state, and the operation or construction of disposal systems, without a valid SPDES permit as provided by section 17-0701 or title 8 hereof are prohibited.". Several federal court cases have held that construction activity, which requires a NPDES permit (SPDES in New York State), is properly defined as a <u>point source</u> under the Clean Water Act (CWA). In other words, activities that fit the definition of "construction activity" under 40 CFR 122.26(b)(14)(x) and (15)(i), constitute point source activity. Therefore, pursuant to Section 17-0505, the owner or operator must have coverage under a SPDES permit prior to commencing construction activity.

- The owner of a construction activity needs to ensure that the appropriate "Qualified Inspector" has been hired to inspect the different components of the SWPPP. Some of the individuals included in the definition of "Qualified Inspector" may not have the necessary qualifications, certification(s) or license(s) to inspect a post-construction stormwater management practice and then certify that it has been constructed in conformance with the SWPPP (Refer to the NYS Education Department rules and regulations that apply to licensed professional engineers). For these inspections, the owner may have to hire the design engineer (or other professional engineer) to act as the "Qualified Inspector" in order to meet any NYS Education Department rules and regulations that apply to licensed professionals.
- The trained contractor identified in Part III.A.6. <u>cannot</u> conduct the qualified inspector site inspections unless they meet the qualified inspector qualifications included in Appendix A of this permit. In order to perform these inspections, the trained contractor would have to be a:
 - licensed Professional Engineer,
 - Certified Professional in Erosion and Sediment Control (CPESC),
 - Registered Landscape Architect, or
 - someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity.

Attachment A BMP Construction Inspection Checklist

Appendix F: Construction Inspection Checklists

Stormwater/Wetland Pond Construction Inspection Checklist

Storing (wood), () Colonia I on a Co		inspection encomist
Project: Location: Site Status:		
Date:		
Time:		
Inspector:		
LONSTRUCTION SECUENCE	SATISFACTORY/ UNSATISFACTORY	COMMENTS
Pre-Construction/Materials and Equipment		
Pre-construction meeting		
Pipe and appurtenances on-site prior to construction		

CONSTRUCTION SEQUENCE	SATISFACTORY/ UNSATISFACTORY	COMMENTS
2. Subgrade Preparation	•	
Area beneath embankment stripped of all vegetation, topsoil, and organic matter		
3. Pipe Spillway Installation		
Method of installation detailed on plans		
A. Bed preparation		
Installation trench excavated with specified side slopes		
Stable, uniform, dry subgrade of relatively impervious material (If subgrade is wet, contractor shall have defined steps before proceeding with installation)		
Invert at proper elevation and grade		
B. Pipe placement		
Metal / plastic pipe		
Watertight connectors and gaskets properly installed		
Anti-seep collars properly spaced and having watertight connections to pipe		
Backfill placed and tamped by hand under "haunches" of pipe		
Remaining backfill placed in max. 8 inch lifts using small power tamping equipment until 2 feet cover over pipe is reached		

CONSTRUCTION SEQUENCE	SATISFACTORY/ UNSATISFACTORY	COMMENTS	
3. Pipe Spillway Installation			
Concrete pipe			
Pipe set on blocks or concrete slab for pouring of low cradle			
Pipe installed with rubber gasket joints with no spalling in gasket interface area			
Excavation for lower half of anti-seep collar(s) with reinforcing steel set			
Entire area where anti-seep collar(s) will come in contact with pipe coated with mastic or other approved waterproof sealant			
5. Low cradle and bottom half of anti-seep collar installed as monolithic pour and of an approved mix			
Upper half of anti-seep collar(s) formed with reinforcing steel set			
7. Concrete for collar of an approved mix and vibrated into place (protected from freezing while curing, if necessary)			
Forms stripped and collar inspected for honeycomb prior to backfilling. Parge if necessary.			
C. Backfilling			
Fill placed in maximum 8 inch lifts			
Backfill taken minimum 2 feet above top of anti- seep collar elevation before traversing with heavy equipment			

Co	INSTRUCTION SEQUENCE	SATISFACTORY/ Unsatisfactory	COMMENTS
4.	Riser / Outlet Structure Installation		
Ris	ser located within embankment		
Α.	Metal riser		
	Riser base excavated or formed on stable subgrade to design dimensions		
	Set on blocks to design elevations and plumbed		
	Reinforcing bars placed at right angles and projecting into sides of riser		
	Concrete poured so as to fill inside of riser to invert of barrel		
В.	Pre-cast concrete structure		
	Dry and stable subgrade		
	Riser base set to design elevation		
	If more than one section, no spalling in gasket interface area; gasket or approved caulking material placed securely		
	Watertight and structurally sound collar or gasket joint where structure connects to pipe spillway		
C.	Poured concrete structure		
	Footing excavated or formed on stable subgrade, to design dimensions with reinforcing steel set		
	Structure formed to design dimensions, with reinforcing steel set as per plan		
	Concrete of an approved mix and vibrated into place (protected from freezing while curing, if necessary)		
	Forms stripped & inspected for "honeycomb" prior to backfilling; parge if necessary		

CONSTRUCTION SEQUENCE	SATISFACTORY/ Unsatisfactory	COMMENTS
5. Embankment Construction		
Fill material		
Compaction		
Embankment		
Fill placed in specified lifts and compacted with appropriate equipment		
Constructed to design cross-section, side slopes and top width		
Constructed to design elevation plus allowance for settlement		
6. Impounded Area Construction		
Excavated / graded to design contours and side slopes		
Inlet pipes have adequate outfall protection		
Forebay(s)		
Pond benches		
7. Earth Emergency Spillway Construction		
Spillway located in cut or structurally stabilized with riprap, gabions, concrete, etc.		
Excavated to proper cross-section, side slopes and bottom width		
Entrance channel, crest, and exit channel constructed to design grades and elevations		

CONSTRUCTION SEQUENCE	SATISFACTORY / Unsatisfactory	COMMENTS
8. Outlet Protection		
A. End section		
Securely in place and properly backfilled		
B. Endwall		
Footing excavated or formed on stable subgrade, to design dimensions and reinforcing steel set, if specified		
Endwall formed to design dimensions with reinforcing steel set as per plan		
Concrete of an approved mix and vibrated into place (protected from freezing, if necessary)		
Forms stripped and structure inspected for "honeycomb" prior to backfilling; parge if necessary		
C. Riprap apron / channel		
Apron / channel excavated to design cross- section with proper transition to existing ground		
Filter fabric in place		
Stone sized as per plan and uniformly place at the thickness specified		
9. Vegetative Stabilization		
Approved seed mixture or sod		
Proper surface preparation and required soil amendments		
Excelsior mat or other stabilization, as per plan		

CONSTRUCTION SEQUENCE	SATISFACTORY/	COMMENTS
10. Miscellaneous	Unsatisfactory	
Drain for ponds having a permanent pool		
Trash rack / anti-vortex device secured to outlet structure		
Trash protection for low flow pipes, orifices, etc.		
Fencing (when required)		
Access road		
Set aside for clean-out maintenance		
11. Stormwater Wetlands	•	
Adequate water balance		
Variety of depth zones present		
Approved pondscaping plan in place Reinforcement budget for additional plantings		
Plants and materials ordered 6 months prior to construction		
Construction planned to allow for adequate planting and establishment of plant community (April-June planting window)		
Wetland buffer area preserved to maximum extent possible		
Comments:		

Actions to be Taken:					

Infiltration Basin Construction Inspection Checklist

Project:		
Location:		
Site Status:		
Date:		
Time:		
Inspector:		

CONSTRUCTION SEQUENCE	SATISFACTORY/ Unsatisfactory	COMMENTS
1. Pre-Construction		
Runoff diverted		
Soil permeability tested		
Groundwater / bedrock depth		
2. Excavation		
Size and location		
Side slopes stable		
Excavation does not compact subsoils		
3. Embankment		
Barrel		
Anti-seep collar or Filter diaphragm		
Fill material		

CONSTRUCTION SEQUENCE	SATISFACTORY/ UNSATISFACTORY	COMMENTS
4. Final Excavation		
Drainage area stabilized		
Sediment removed from facility		
Basin floor tilled		
Facility stabilized		
5. Final Inspection		
Pretreatment facility in place		
Inlets / outlets		
Contributing watershed stabilized before flow is routed to the factility		
Comments:		
Actions to be Taken:		

Project:

Sand/Organic Filter System Construction Inspection Checklist

Location: Site Status:			
Date:			
Time:			
Inspector:			
CONSTRUCTION SEQUENCE	SATISFACTORY / UNSATISFACTORY	COMMENTS	_
1. Pre-construction			
Pre-construction meeting			_
Runoff diverted			
Facility area cleared			
Facility location staked out			_
2. Excavation			
Size and location			
Side slopes stable			
Foundation cleared of debris			
If designed as exfilter, excavation does not compact subsoils			
Foundation area compacted			
3. Structural Components			
Dimensions and materials			
Forms adequately sized			
Concrete meets standards			
Prefabricated joints sealed			
Underdrains (size, materials)			

CONSTRUCTION SEQUENCE	SATISFACTORY / Unsatisfactory	COMMENTS
4. Completed Facility Components		
24 hour water filled test		
Contributing area stabilized		
Filter material per specification		
Underdrains installed to grade		
Flow diversion structure properly installed		
Pretreatment devices properly installed		
Level overflow weirs, multiple orifices, distribution slots		
5. Final Inspection		
Dimensions		
Surface completely level		
Structural components		
Proper outlet		
Ensure that site is properly stabilized before flow is directed to the structure.		

Comments:			
Actions to be Taken:			

Attachment B BMP Maintenance Inspection Checklist

Stormwater Pond/Wetland Operation, Maintenance and Management Inspection Checklist

Project		
Location: Site Status:		
Date:		
Time:		
Inspector:		

Maintenance Item	Satisfactory/ Unsatisfactory	Comments
1. Embankment and emergency spillway (Annual, After	r Major Storms)	
Vegetation and ground cover adequate		
2. Embankment erosion		
3. Animal burrows		
4. Unauthorized planting		
5. Cracking, bulging, or sliding of dam		
a. Upstream face		
b. Downstream face		
c. At or beyond toe		
downstream		
upstream		
d. Emergency spillway		
6.Pond, toe & chimney drains clear and functioning		
7.Seeps/leaks on downstream face		
8.Slope protection or riprap failure		
9. Vertical/horizontal alignment of top of dam "As-Built"		

Maintenance Item	Satisfactory/ Unsatisfactory	Comments
10. Emergency spillway clear of obstructions and debris		
11. Other (specify)		
2. Riser and principal spillway (Annual)	•	•
Type: Reinforced concrete Corrugated pipe Masonry 1. Low flow orifice obstructed		
Low flow trash rack. a. Debris removal necessary		
b. Corrosion control		
Weir trash rack maintenance a. Debris removal necessary		
b. corrosion control		
4. Excessive sediment accumulation insider riser		
Concrete/masonry condition riser and barrels a. cracks or displacement		
b. Minor spalling (<1")		
c. Major spalling (rebars exposed)		
d. Joint failures		
e. Water tightness		
6. Metal pipe condition		
7. Control valve a. Operational/exercised		
b. Chained and locked		
Pond drain valve a. Operational/exercised		
b. Chained and locked		
9. Outfall channels functioning		
10. Other (specify)		

Maintenance Item	Satisfactory/ Unsatisfactory	Comments
3. Permanent Pool (Wet Ponds) (mon	thly)	
1. Undesirable vegetative growth		
2. Floating or floatable debris removal required		
3. Visible pollution		
4. Shoreline problem		
5. Other (specify)		
4. Sediment Forebays		
1.Sedimentation noted		
2. Sediment cleanout when depth < 50% design depth		
5. Dry Pond Areas		
1. Vegetation adequate		
2. Undesirable vegetative growth		
3. Undesirable woody vegetation		
4. Low flow channels clear of obstructions		
5. Standing water or wet spots		
6. Sediment and / or trash accumulation		
7. Other (specify)		
6. Condition of Outfalls (Annual, After Major Storn	ns)	
1. Riprap failures		
2. Slope erosion		
3. Storm drain pipes		
4.Endwalls / Headwalls		
5. Other (specify)		
7. Other (Monthly)		
1. Encroachment on pond, wetland or easement area		

Maintenance Item	Satisfactory/ Unsatisfactory	Comments
2. Complaints from residents		
3.Aesthetics a. Grass growing required		
b. Graffiti removal needed		
c. Other (specify)		
4. Conditions of maintenance access routes.		
5. Signs of hydrocarbon build-up		
6. Any public hazards (specify)		
8. Wetland Vegetation (Annual)		
Vegetation healthy and growing Wetland maintaining 50% surface area coverage of wetland plants after the second growing season. (If unsatisfactory, reinforcement plantings needed)		
Dominant wetland plants: Survival of desired wetland plant species Distribution according to landscaping plan?		
3. Evidence of invasive species		
Maintenance of adequate water depths for desired wetland plant species		
5. Harvesting of emergent plantings needed		
6. Have sediment accumulations reduced pool volume significantly or are plants "choked" with sediment		
7. Eutrophication level of the wetland.		
8. Other (specify)		
Comments:		

Actions to be Taken:			

5. Inlets

(Annual)

Infiltration Basin Operation, Maintenance, and Management Inspection Checklist

Project: Location: Site Status:		
Date:		
Time:		
Inspector:		
Maintenance Item	SATISFACTORY / UNSATISFACTORY	COMMENTS
1. Debris Cleanout (Monthly)	
Basin surface clear of debris		
Inflow pipes clear of debris		
Overflow spillway clear of debris		
Inlet area clear of debris		
2. Sediment Traps or Forebays (Ar	nnual)	
Obviously trapping sediment		
Greater than 50% of storage volume remaining		
3. Dewatering (Monthly)		
Basin dewaters between storms		
4. Sediment Cleanout of Basin	(Annual)	
No evidence of sedimentation in basin		
Sediment accumulation doesn't yet require cleanout		

Maintenance Item	SATISFACTORY / UNSATISFACTORY	COMMENTS		
Good condition				
No evidence of erosion				
6. Outlet/Overflow Spillway (Annua	l)			
Good condition, no need for repair				
No evidence of erosion				
7. Aggregate Repairs (Annual)				
Surface of aggregate clean				
Top layer of stone does not need replacement				
Basin does not need rehabilitation				
Comments:				
Actions to be Taken:				

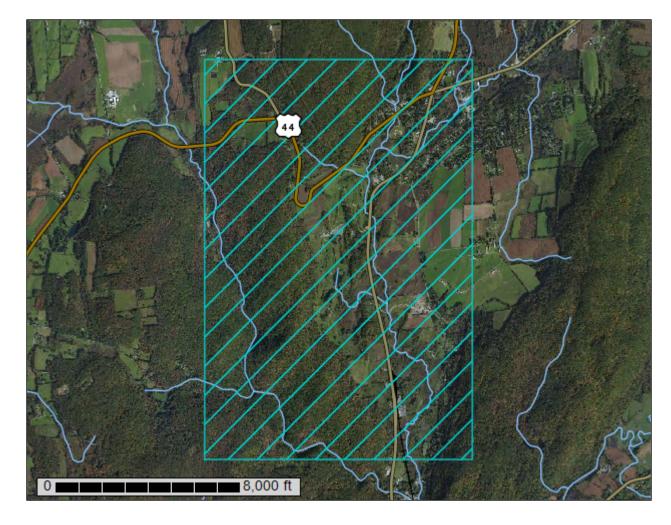
5. Sediment Deposition

Sand/Organic Filter Operation, Maintenance and Management Inspection Checklist

Location: Site Status:		
Date:		
Time:		
Inspector:		
Maintenance Item	SATISFACTORY / UNSATISFACTORY	COMMENTS
1. Debris Cleanout (Monthly))	
Contributing areas clean of debris		
Filtration facility clean of debris		
Inlet and outlets clear of debris		
2. Oil and Grease (Monthly)		
No evidence of filter surface clogging		
Activities in drainage area minimize oil and grease entry		
3. Vegetation (Monthly)		
Contributing drainage area stabilized		
No evidence of erosion		
Area mowed and clipping removed		
4. Water Retention Where Required (Monthly)	
Water holding chambers at normal pool		
No evidence of leakage		

(Annual)

MAINTENANCE ITEM	SATISFACTORY / UNSATISFACTORY	COMMENTS		
Filter chamber free of sediments				
Sedimentation chamber not more than half full of sediments				
6. Structural Components (Annual)				
No evidence of structural deterioration				
Any grates are in good condition				
No evidence of spalling or cracking of structural parts				
7. Outlet/Overflow Spillway (Annual)				
Good condition, no need for repairs				
No evidence of erosion (if draining into a natural channel)				
8. Overall Function of Facility	(Annual)			
Evidence of flow bypassing facility				
No noticeable odors outside of facility				
Comments:				
Actions to be Taken:				


Attachment C Site Plan (See attached CD)

Attachment D Soils Information (See attached CD)

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Dutchess County, New York

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app? agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means

for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	6
Soil Map	8
Soil Map	9
Legend	
Map Unit Legend	11
Map Unit Descriptions	
Dutchess County, New York	
CrC—Charlton-Chatfield complex, rolling, rocky	
CrD—Charlton-Chatfield complex, hilly, rocky	
CtC—Chatfield-Hollis complex, rolling, very rocky	
CtD—Chatfield-Hollis complex, hilly, very rocky	
CuA—Copake gravelly silt loam, nearly level	
CuB—Copake gravelly silt loam, undulating	
CuC—Copake gravelly silt loam, rolling	
CuD—Copake gravelly silt loam, hilly	
CwA—Copake channery silt loam, fan, 0 to 3 percent slopes	
CwB—Copake channery silt loam, fan, 3 to 8 percent slopes	
CxB—Copake-Urban land complex, undulating	
DwB—Dutchess-Cardigan complex, undulating, rocky	
DwC—Dutchess-Cardigan complex, rolling, rocky	
DwD—Dutchess-Cardigan complex, hilly, rocky	
FeE—Farmington-Rock outcrop complex, steep	
Ff—Fluvaquents-Udifluvents complex, frequently flooded	
Fr—Fredon silt loam	
GfD—Galway-Farmington complex, hilly	
GsB—Georgia silt loam, 3 to 8 percent slopes	
GsC—Georgia silt loam, 8 to 15 percent slopes	
HoE—Hollis-Chatfield-Rock outcrop complex, steep	
HoF—Hollis-Chatfield-Rock outcrop complex, very steep	
HsE—Hoosic gravelly loam, 25 to 45 percent slopes	
MnA—Massena silt loam, 0 to 3 percent slopes	
MnB—Massena silt loam, 3 to 8 percent slopes	
NwC—Nassau-Cardigan complex, rolling, very rocky	
NwD—Nassau-Cardigan complex, hilly, very rocky	
NxE—Nassau-Rock outcrop complex, steep	
NxF—Nassau-Rock outcrop complex, very steep	
Pc—Palms muck	
Pg—Pawling silt loam	
Ps—Pits, gravel	
SkB—Stockbridge silt loam, 3 to 8 percent slopes	
SkC—Stockbridge silt loam, 8 to 15 percent slopes	
SkD—Stockbridge silt loam, 15 to 25 percent slopes	
SkE—Stockbridge silt loam, 25 to 45 percent slopes	

SmC—Stockbridge-Farmington complex, rolling, rocky	65
SmD—Stockbridge-Farmington complex, hilly, rocky	66
Su—Sun silt loam	68
Ud—Udorthents, smoothed	69
Ue—Udorthents, wet substratum	70
W—Water	71
Wy—Wayland silt loam	72
Soil Information for All Uses	74
Soil Properties and Qualities	74
Soil Qualities and Features	74
Hydrologic Soil Group	74
References	81

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

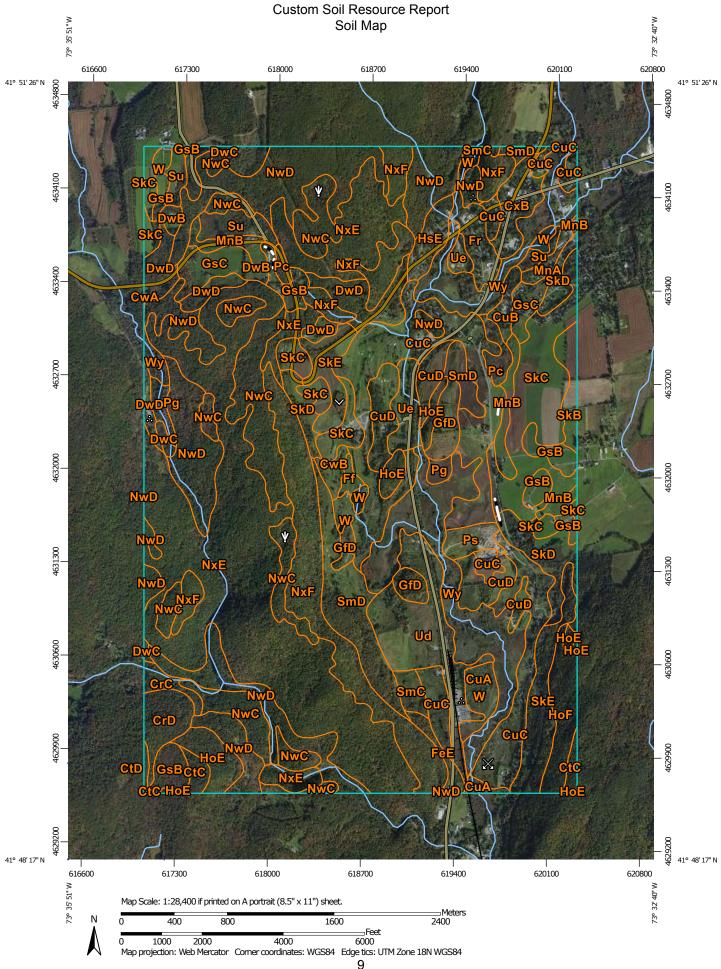
Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.


While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

å Stony Spot

Spoil Area

8

Very Stony Spot

Special Line Features

Ŷ Δ

Wet Spot Other

Soils

Soil Map Unit Points

Soil Map Unit Polygons

Soil Map Unit Lines

Special Point Features

Blowout

Borrow Pit

Clay Spot 36

 \Diamond Closed Depression

× Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Dutchess County, New York Survey Area Data: Version 9, Sep 21, 2012

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Mar 28, 2011—Oct 9, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Streams and Canals

Transportation

Rails ---

Interstate Highways

US Routes

Major Roads

Local Roads 0

Background

Aerial Photography

Map Unit Legend

Dutchess County, New York (NY027)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
CrC	Charlton-Chatfield complex, rolling, rocky	14.4	0.4%		
CrD	Charlton-Chatfield complex, hilly, rocky	37.0	0.9%		
CtC	Chatfield-Hollis complex, rolling, very rocky	18.4	0.5%		
CtD	Chatfield-Hollis complex, hilly, very rocky	2.8	0.1%		
CuA	Copake gravelly silt loam, nearly level	30.1	0.8%		
CuB	Copake gravelly silt loam, undulating	14.8	0.4%		
CuC	Copake gravelly silt loam, rolling	363.4	9.3%		
CuD	Copake gravelly silt loam, hilly	87.5	2.2%		
CwA	Copake channery silt loam, fan, 0 to 3 percent slopes	0.4	0.0%		
CwB	Copake channery silt loam, fan, 3 to 8 percent slopes	11.9	0.3%		
СхВ	Copake-Urban land complex, undulating	39.3	1.0%		
DwB	Dutchess-Cardigan complex, undulating, rocky	14.6	0.4%		
DwC	Dutchess-Cardigan complex, rolling, rocky	32.2	0.8%		
DwD	Dutchess-Cardigan complex, hilly, rocky	94.6	2.4%		
FeE	Farmington-Rock outcrop complex, steep	13.4	0.3%		
Ff	Fluvaquents-Udifluvents complex, frequently flooded	7.2	0.2%		
Fr	Fredon silt loam	33.2	0.8%		
GfD	Galway-Farmington complex, hilly	45.8	1.2%		
GsB	Georgia silt loam, 3 to 8 percent slopes	78.0	2.0%		
GsC	Georgia silt loam, 8 to 15 percent slopes	57.2	1.5%		
HoE	Hollis-Chatfield-Rock outcrop complex, steep	57.4	1.5%		
HoF	Hollis-Chatfield-Rock outcrop complex, very steep	49.7	1.3%		
HsE	Hoosic gravelly loam, 25 to 45 percent slopes	27.4	0.7%		

Dutchess County, New York (NY027)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
MnA	Massena silt loam, 0 to 3 percent slopes	12.2	0.3%	
MnB	Massena silt loam, 3 to 8 percent slopes	46.1	1.2%	
NwC	Nassau-Cardigan complex, rolling, very rocky	237.2	6.1%	
NwD	Nassau-Cardigan complex, hilly, very rocky	410.3	10.5%	
NxE	Nassau-Rock outcrop complex, steep	697.8	17.8%	
NxF	Nassau-Rock outcrop complex, very steep	258.3	6.6%	
Pc	Palms muck	21.4	0.5%	
Pg	Pawling silt loam	19.1	0.5%	
Ps	Pits, gravel	21.2	0.5%	
SkB	Stockbridge silt loam, 3 to 8 percent slopes	35.7	0.9%	
SkC	Stockbridge silt loam, 8 to 15 percent slopes	202.5	5.2%	
SkD	Stockbridge silt loam, 15 to 25 percent slopes	82.4	2.1%	
SkE	Stockbridge silt loam, 25 to 45 percent slopes	103.8	2.6%	
SmC	Stockbridge-Farmington complex, rolling, rocky	16.0	0.4%	
SmD	Stockbridge-Farmington complex, hilly, rocky	113.5	2.9%	
Su	Sun silt loam	46.2	1.2%	
Ud	Udorthents, smoothed	126.9	3.2%	
Ue	Udorthents, wet substratum	39.5	1.0%	
W	Water	19.9	0.5%	
Wy	Wayland silt loam	277.4	7.1%	
Totals for Area of Interest		3,918.4	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability

of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and

relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Dutchess County, New York

CrC—Charlton-Chatfield complex, rolling, rocky

Map Unit Setting

Elevation: 100 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Charlton and similar soils: 50 percent Chatfield and similar soils: 30 percent Minor components: 20 percent

Description of Charlton

Setting

Landform: Hills, ridges, till plains

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Acid loamy till derived mainly from schist, gneiss, or granite

Properties and qualities

Slope: 5 to 16 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 7.6 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 3e

Hydrologic Soil Group: B

Typical profile

0 to 8 inches: Loam

8 to 30 inches: Gravelly loam 30 to 72 inches: Gravelly loam

Description of Chatfield

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from granite, gneiss, or schist

Properties and qualities

Slope: 5 to 16 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent Available water capacity: Low (about 4.0 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 3e

Hydrologic Soil Group: B

Typical profile

0 to 9 inches: Fine sandy loam

9 to 30 inches: Loam

30 to 34 inches: Unweathered bedrock

Minor Components

Hollis

Percent of map unit: 9 percent

Georgia

Percent of map unit: 5 percent

Massena

Percent of map unit: 4 percent

Rock outcrop

Percent of map unit: 1 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

CrD—Charlton-Chatfield complex, hilly, rocky

Map Unit Setting

Elevation: 100 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Chatfield and similar soils: 40 percent Charlton and similar soils: 40 percent

Minor components: 20 percent

Description of Charlton

Setting

Landform: Hills, ridges, till plains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Acid loamy till derived mainly from schist, gneiss, or granite

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 7.6 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: B

Typical profile

0 to 8 inches: Loam

8 to 30 inches: Gravelly loam 30 to 72 inches: Gravelly loam

Description of Chatfield

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from granite, gneiss, or schist

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent Available water capacity: Low (about 4.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: B

Typical profile

0 to 9 inches: Fine sandy loam

9 to 30 inches: Loam

30 to 34 inches: Unweathered bedrock

Minor Components

Sun

Percent of map unit: 10 percent

Landform: Depressions

Hollis

Percent of map unit: 9 percent

Rock outcrop

Percent of map unit: 1 percent

CtC—Chatfield-Hollis complex, rolling, very rocky

Map Unit Setting

Elevation: 100 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Hollis and similar soils: 40 percent Chatfield and similar soils: 40 percent Minor components: 20 percent

Description of Chatfield

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from granite, gneiss, or schist

Properties and qualities

Slope: 5 to 16 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent Available water capacity: Low (about 4.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: B

Typical profile

0 to 9 inches: Fine sandy loam

9 to 30 inches: Loam

30 to 34 inches: Unweathered bedrock

Description of Hollis

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: A thin mantle of loamy till derived mainly from schist, granite, and

gneiss

Properties and qualities

Slope: 5 to 16 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.9 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s Hydrologic Soil Group: D

Typical profile

0 to 3 inches: Loam 3 to 15 inches: Loam

15 to 19 inches: Unweathered bedrock

Minor Components

Charlton

Percent of map unit: 10 percent

Rock outcrop

Percent of map unit: 5 percent

Georgia

Percent of map unit: 3 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

Massena

Percent of map unit: 1 percent

CtD—Chatfield-Hollis complex, hilly, very rocky

Map Unit Setting

Elevation: 100 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Hollis and similar soils: 40 percent Chatfield and similar soils: 40 percent Minor components: 20 percent

Description of Chatfield

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from granite, gneiss, or schist

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent Available water capacity: Low (about 4.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: B

Typical profile

0 to 9 inches: Fine sandy loam

9 to 30 inches: Loam

30 to 34 inches: Unweathered bedrock

Description of Hollis

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: A thin mantle of loamy till derived mainly from schist, granite, and

gneiss

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.9 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: D

Typical profile

0 to 3 inches: Loam 3 to 15 inches: Loam

15 to 19 inches: Unweathered bedrock

Minor Components

Charlton

Percent of map unit: 10 percent

Rock outcrop

Percent of map unit: 5 percent

Sun

Percent of map unit: 5 percent Landform: Depressions

CuA—Copake gravelly silt loam, nearly level

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Copake and similar soils: 80 percent Minor components: 20 percent

Description of Copake

Setting

Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy over calcareous sandy and gravelly glaciofluvial deposits

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 6.3 inches)

Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 1 Hydrologic Soil Group: A

Typical profile

0 to 6 inches: Gravelly silt loam 6 to 36 inches: Gravelly loam

36 to 80 inches: Stratified very gravelly coarse sand to gravelly loamy fine sand

Minor Components

Hoosic

Percent of map unit: 10 percent

Halsey

Percent of map unit: 5 percent Landform: Depressions

Fredon

Percent of map unit: 5 percent Landform: Depressions

CuB—Copake gravelly silt loam, undulating

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Copake and similar soils: 80 percent *Minor components:* 20 percent

Description of Copake

Setting

Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy over calcareous sandy and gravelly glaciofluvial deposits

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 6.3 inches)

Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 2e

Hydrologic Soil Group: A

Typical profile

0 to 6 inches: Gravelly silt loam 6 to 36 inches: Gravelly loam

36 to 80 inches: Stratified very gravelly coarse sand to gravelly loamy fine sand

Minor Components

Hoosic

Percent of map unit: 10 percent

Fredon

Percent of map unit: 5 percent Landform: Depressions

Halsey

Percent of map unit: 5 percent Landform: Depressions

CuC—Copake gravelly silt loam, rolling

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Copake and similar soils: 85 percent *Minor components*: 15 percent

Description of Copake

Setting

Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy over calcareous sandy and gravelly glaciofluvial deposits

Properties and qualities

Slope: 5 to 16 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 6.3 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 3e

Hydrologic Soil Group: A

Typical profile

0 to 6 inches: Gravelly silt loam 6 to 36 inches: Gravelly loam

36 to 80 inches: Stratified very gravelly coarse sand to gravelly loamy fine sand

Minor Components

Hoosic

Percent of map unit: 10 percent

Fredon

Percent of map unit: 3 percent Landform: Depressions

Halsey

Percent of map unit: 2 percent Landform: Depressions

CuD—Copake gravelly silt loam, hilly

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Copake and similar soils: 85 percent Minor components: 15 percent

Description of Copake

Setting

Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Riser

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy over calcareous sandy and gravelly glaciofluvial deposits

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 6.3 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: A

Typical profile

0 to 6 inches: Gravelly silt loam 6 to 36 inches: Gravelly loam

36 to 80 inches: Stratified very gravelly coarse sand to gravelly loamy fine sand

Minor Components

Hoosic

Percent of map unit: 10 percent

Fredon

Percent of map unit: 5 percent Landform: Depressions

CwA—Copake channery silt loam, fan, 0 to 3 percent slopes

Map Unit Setting

Elevation: 300 to 850 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Copake and similar soils: 80 percent Minor components: 20 percent

Description of Copake

Setting

Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy over calcareous sandy and gravelly glaciofluvial deposits

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: About 36 to 72 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 6.3 inches)

Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 1 Hydrologic Soil Group: A

Typical profile

0 to 6 inches: Channery silt loam 6 to 36 inches: Channery loam

36 to 80 inches: Stratified very gravelly coarse sand to gravelly loamy fine sand

Minor Components

Hoosic

Percent of map unit: 10 percent

Fredon

Percent of map unit: 5 percent Landform: Depressions

Halsey

Percent of map unit: 5 percent Landform: Depressions

CwB—Copake channery silt loam, fan, 3 to 8 percent slopes

Map Unit Setting

Elevation: 300 to 850 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Copake and similar soils: 80 percent *Minor components*: 20 percent

Description of Copake

Settina

Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy over calcareous sandy and gravelly glaciofluvial deposits

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: About 36 to 72 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 6.3 inches)

Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 2e

Hydrologic Soil Group: A

Typical profile

0 to 6 inches: Channery silt loam 6 to 36 inches: Channery loam

36 to 80 inches: Stratified very gravelly coarse sand to gravelly loamy fine sand

Minor Components

Hoosic

Percent of map unit: 10 percent

Fredon

Percent of map unit: 5 percent Landform: Depressions

Halsey

Percent of map unit: 5 percent Landform: Depressions

CxB—Copake-Urban land complex, undulating

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Copake and similar soils: 40 percent

Urban land: 35 percent

Minor components: 25 percent

Description of Copake

Setting

Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy over calcareous sandy and gravelly glaciofluvial deposits

Properties and qualities

Slope: 1 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Available water capacity: Moderate (about 6.3 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 2e

Hydrologic Soil Group: A

Typical profile

0 to 6 inches: Gravelly silt loam 6 to 36 inches: Gravelly loam

36 to 80 inches: Stratified very gravelly coarse sand to gravelly loamy fine sand

Description of Urban Land

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 8s

Typical profile

0 to 6 inches: Variable

Minor Components

Udorthents

Percent of map unit: 10 percent

Fredon

Percent of map unit: 5 percent Landform: Depressions

Hoosic

Percent of map unit: 5 percent

Halsey

Percent of map unit: 5 percent Landform: Depressions

DwB—Dutchess-Cardigan complex, undulating, rocky

Map Unit Setting

Elevation: 50 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Dutchess and similar soils: 40 percent Cardigan and similar soils: 30 percent Minor components: 30 percent

Description of Dutchess

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from phyllite, slate, schist, and shale

Properties and qualities

Slope: 1 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 9.6 inches)

Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 2e

Hydrologic Soil Group: B

Typical profile

0 to 8 inches: Silt loam 8 to 28 inches: Silt loam

28 to 86 inches: Channery silt loam

Description of Cardigan

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till or colluvium derived from phyllite, slate, shale, and schist

Properties and qualities

Slope: 1 to 6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low

(0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 4.1 inches)

Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 2e

Hydrologic Soil Group: C

Typical profile

0 to 8 inches: Channery silt loam 8 to 20 inches: Channery loam 20 to 30 inches: Channery silt loam 30 to 34 inches: Unweathered bedrock

Minor Components

Georgia

Percent of map unit: 10 percent

Massena

Percent of map unit: 9 percent

Nassau

Percent of map unit: 9 percent

Rock outcrop

Percent of map unit: 1 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

DwC—Dutchess-Cardigan complex, rolling, rocky

Map Unit Setting

Elevation: 50 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Dutchess and similar soils: 40 percent Cardigan and similar soils: 30 percent Minor components: 30 percent

Description of Dutchess

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from phyllite, slate, schist, and shale

Properties and qualities

Slope: 5 to 16 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 9.6 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 3e

Hydrologic Soil Group: B

Typical profile

0 to 8 inches: Silt loam 8 to 28 inches: Silt loam

28 to 86 inches: Channery silt loam

Description of Cardigan

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till or colluvium derived from phyllite, slate, shale, and schist

Properties and qualities

Slope: 5 to 16 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low

(0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 4.1 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 3e

Hydrologic Soil Group: C

Typical profile

0 to 8 inches: Channery silt loam 8 to 20 inches: Channery loam 20 to 30 inches: Channery silt loam 30 to 34 inches: Unweathered bedrock

Minor Components

Georgia

Percent of map unit: 10 percent

Massena

Percent of map unit: 9 percent

Nassau

Percent of map unit: 9 percent

Rock outcrop

Percent of map unit: 1 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

DwD—Dutchess-Cardigan complex, hilly, rocky

Map Unit Setting

Elevation: 50 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Dutchess and similar soils: 40 percent Cardigan and similar soils: 30 percent Minor components: 30 percent

Description of Dutchess

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from phyllite, slate, schist, and shale

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: High (about 9.6 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: B

Typical profile

0 to 8 inches: Silt loam 8 to 28 inches: Silt loam

28 to 86 inches: Channery silt loam

Description of Cardigan

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till or colluvium derived from phyllite, slate, shale, and schist

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low

(0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 4.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e Hydrologic Soil Group: C

Typical profile

0 to 8 inches: Channery silt loam 8 to 20 inches: Channery loam 20 to 30 inches: Channery silt loam 30 to 34 inches: Unweathered bedrock

Minor Components

Sun

Percent of map unit: 10 percent

Landform: Depressions

Nassau

Percent of map unit: 9 percent

Georgia

Percent of map unit: 5 percent

Massena

Percent of map unit: 5 percent

Rock outcrop

Percent of map unit: 1 percent

FeE—Farmington-Rock outcrop complex, steep

Map Unit Setting

Elevation: 100 to 900 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Farmington and similar soils: 60 percent

Rock outcrop: 20 percent Minor components: 20 percent

Description of Farmington

Setting

Landform: Benches, ridges, till plains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till or congeliturbate derived from limestone, dolomite, shale, and sandstone, and in many places mixed with wind and water deposits

Properties and qualities

Slope: 25 to 45 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/

hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent Available water capacity: Very low (about 2.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Hydrologic Soil Group: D

Typical profile

0 to 7 inches: Loam

7 to 15 inches: Very fine sandy loam 15 to 19 inches: Unweathered bedrock

Description of Rock Outcrop

Properties and qualities

Slope: 25 to 45 percent

Depth to restrictive feature: 0 inches to lithic bedrock

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/

hr)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Typical profile

0 to 60 inches: Unweathered bedrock

Minor Components

Galway

Percent of map unit: 10 percent

Stockbridge

Percent of map unit: 9 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

Ff—Fluvaquents-Udifluvents complex, frequently flooded

Map Unit Setting

Elevation: 100 to 3,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Fluvaquents and similar soils: 50 percent Udifluvents and similar soils: 40 percent

Minor components: 10 percent

Description of Fluvaquents

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Alluvium with highly variable texture

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very

high (0.06 to 19.98 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: FrequentNone

Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 6.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 5w Hydrologic Soil Group: A/D

Typical profile

0 to 5 inches: Gravelly silt loam 5 to 70 inches: Very gravelly silt loam

Description of Udifluvents

Setting

Landform: Flood plains

Landform position (two-dimensional): Summit Landform position (three-dimensional): Talf

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Alluvium with a wide range of texture

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very

high (0.06 to 19.98 in/hr)

Depth to water table: About 24 to 72 inches Frequency of flooding: FrequentNone

Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Low (about 5.9 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 5w

Hydrologic Soil Group: A

Typical profile

0 to 4 inches: Gravelly loam 4 to 70 inches: Very gravelly loam

Minor Components

Linlithgo

Percent of map unit: 2 percent Landform: Depressions

Wayland

Percent of map unit: 2 percent Landform: Flood plains

Wappinger

Percent of map unit: 1 percent Landform: Depressions

Pawling

Percent of map unit: 1 percent Landform: Depressions

Carlisle

Percent of map unit: 1 percent Landform: Swamps, marshes

Palms

Percent of map unit: 1 percent Landform: Marshes, swamps

Hoosic, fan

Percent of map unit: 1 percent

Copake, fan

Percent of map unit: 1 percent

Fr—Fredon silt loam

Map Unit Setting

Elevation: 250 to 1,200 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Fredon and similar soils: 85 percent Minor components: 15 percent

Description of Fredon

Setting

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Loamy over sandy and gravelly glaciofluvial deposits

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 1.98 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 6.1 inches)

Interpretive groups

Farmland classification: Prime farmland if drained

Land capability (nonirrigated): 3w Hydrologic Soil Group: B/D

Typical profile

0 to 9 inches: Silt loam

9 to 31 inches: Very fine sandy loam

31 to 70 inches: Stratified very gravelly sand to loamy fine sand

Minor Components

Fredon, poorly drained

Percent of map unit: 5 percent Landform: Depressions

Unnamed soils, glacial outwash

Percent of map unit: 5 percent

Halsey

Percent of map unit: 5 percent Landform: Depressions

GfD—Galway-Farmington complex, hilly

Map Unit Setting

Elevation: 100 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Galway and similar soils: 40 percent Farmington and similar soils: 35 percent

Minor components: 25 percent

Description of Galway

Setting

Landform: Benches, ridges, till plains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex

Across-slope shape: Convex

Parent material: Calcareous loamy till

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/

hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 25 percent Available water capacity: Low (about 4.2 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: C

Typical profile

0 to 6 inches: Gravelly loam 6 to 30 inches: Gravelly loam 30 to 31 inches: Gravelly loam

31 to 35 inches: Unweathered bedrock

Description of Farmington

Setting

Landform: Benches, ridges, till plains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till or congeliturbate derived from limestone, dolomite, shale, and sandstone, and in many places mixed with wind and water deposits

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/

hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent Available water capacity: Very low (about 2.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6e Hydrologic Soil Group: D

Typical profile

0 to 7 inches: Loam

7 to 15 inches: Very fine sandy loam 15 to 19 inches: Unweathered bedrock

Minor Components

Stockbridge

Percent of map unit: 10 percent

Sun

Percent of map unit: 9 percent Landform: Depressions

Georgia

Percent of map unit: 5 percent

Rock outcrop

Percent of map unit: 1 percent

GsB—Georgia silt loam, 3 to 8 percent slopes

Map Unit Setting

Elevation: 90 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Georgia and similar soils: 80 percent Minor components: 20 percent

Description of Georgia

Setting

Landform: Drumlinoid ridges, hills, till plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Loamy till derived mainly from limestone, shale, or slate

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 18 to 36 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 8.6 inches)

Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 2e Hydrologic Soil Group: C

Typical profile

0 to 8 inches: Silt loam 8 to 27 inches: Loam

27 to 80 inches: Gravelly fine sandy loam

Minor Components

Charlton

Percent of map unit: 5 percent

Massena

Percent of map unit: 5 percent

Stockbridge

Percent of map unit: 5 percent

Dutchess

Percent of map unit: 3 percent

Pittstown

Percent of map unit: 2 percent

GsC—Georgia silt loam, 8 to 15 percent slopes

Map Unit Setting

Elevation: 90 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Georgia and similar soils: 80 percent Minor components: 20 percent

Description of Georgia

Setting

Landform: Drumlinoid ridges, hills, till plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Loamy till derived mainly from limestone, shale, or slate

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 18 to 36 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 8.6 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 3e

Hydrologic Soil Group: C

Typical profile

0 to 8 inches: Silt loam 8 to 27 inches: Loam

27 to 80 inches: Gravelly fine sandy loam

Minor Components

Massena

Percent of map unit: 5 percent

Stockbridge

Percent of map unit: 5 percent

Charlton

Percent of map unit: 3 percent

Dutchess

Percent of map unit: 3 percent

Pittstown

Percent of map unit: 2 percent

Sun

Percent of map unit: 2 percent Landform: Depressions

HoE—Hollis-Chatfield-Rock outcrop complex, steep

Map Unit Setting

Elevation: 100 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Hollis and similar soils: 40 percent Chatfield and similar soils: 30 percent

Rock outcrop: 20 percent Minor components: 10 percent

Description of Hollis

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: A thin mantle of loamy till derived mainly from schist, granite, and

gneiss

Properties and qualities

Slope: 25 to 45 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.9 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Hydrologic Soil Group: D

Typical profile

0 to 3 inches: Loam 3 to 15 inches: Loam

15 to 19 inches: Unweathered bedrock

Description of Chatfield

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from granite, gneiss, or schist

Properties and qualities

Slope: 25 to 45 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent Available water capacity: Low (about 4.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Hydrologic Soil Group: B

Typical profile

0 to 9 inches: Fine sandy loam

9 to 30 inches: Loam

30 to 34 inches: Unweathered bedrock

Description of Rock Outcrop

Properties and qualities

Slope: 25 to 45 percent

Depth to restrictive feature: 0 inches to lithic bedrock

Capacity of the most limiting layer to transmit water (Ksat): Very low to very high

(0.00 to 19.98 in/hr)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Typical profile

0 to 60 inches: Unweathered bedrock

Minor Components

Charlton

Percent of map unit: 5 percent

Sun

Percent of map unit: 5 percent Landform: Depressions

HoF—Hollis-Chatfield-Rock outcrop complex, very steep

Map Unit Setting

Elevation: 100 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Hollis and similar soils: 40 percent

Rock outcrop: 25 percent

Chatfield and similar soils: 25 percent Minor components: 10 percent

Description of Hollis

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: A thin mantle of loamy till derived mainly from schist, granite, and

gneiss

Properties and qualities

Slope: 45 to 60 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.9 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Hydrologic Soil Group: D

Typical profile

0 to 3 inches: Loam 3 to 15 inches: Loam

15 to 19 inches: Unweathered bedrock

Description of Chatfield

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till derived mainly from granite, gneiss, or schist

Properties and qualities

Slope: 45 to 70 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to

5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent Available water capacity: Low (about 4.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: B

Typical profile

0 to 9 inches: Fine sandy loam

9 to 30 inches: Loam

30 to 34 inches: Unweathered bedrock

Description of Rock Outcrop

Properties and qualities

Slope: 45 to 70 percent

Depth to restrictive feature: 0 inches to lithic bedrock

Capacity of the most limiting layer to transmit water (Ksat): Very low to very high

(0.00 to 19.98 in/hr)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Typical profile

0 to 60 inches: Unweathered bedrock

Minor Components

Charlton

Percent of map unit: 5 percent

Sun

Percent of map unit: 5 percent Landform: Depressions

HsE—Hoosic gravelly loam, 25 to 45 percent slopes

Map Unit Setting

Elevation: 100 to 1,100 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Hoosic and similar soils: 85 percent Minor components: 15 percent

Description of Hoosic

Settina

Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Riser

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Sandy and gravelly glaciofluvial deposits

Properties and qualities

Slope: 25 to 45 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): High to very high (1.98

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7e

Hydrologic Soil Group: A

Typical profile

0 to 9 inches: Gravelly loam

9 to 24 inches: Very gravelly sandy loam 24 to 70 inches: Extremely gravelly loamy sand

Minor Components

Copake

Percent of map unit: 5 percent

Fredon

Percent of map unit: 5 percent Landform: Depressions

Knickerbocker

Percent of map unit: 5 percent

MnA—Massena silt loam, 0 to 3 percent slopes

Map Unit Setting

Elevation: 100 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Massena and similar soils: 80 percent Minor components: 20 percent

Description of Massena

Setting

Landform: Drumlinoid ridges, hills, till plains

Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy till dominated by siliceous rocks with varying proportions of

limestone

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: About 12 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent Available water capacity: Moderate (about 7.0 inches)

Interpretive groups

Farmland classification: Prime farmland if drained

Land capability (nonirrigated): 3w Hydrologic Soil Group: C/D

Typical profile

0 to 7 inches: Silt loam 7 to 33 inches: Loam

33 to 72 inches: Fine sandy loam

Minor Components

Sun

Percent of map unit: 10 percent Landform: Depressions

Georgia

Percent of map unit: 5 percent

Punsit

Percent of map unit: 5 percent

MnB—Massena silt loam, 3 to 8 percent slopes

Map Unit Setting

Elevation: 100 to 1,000 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Massena and similar soils: 80 percent Minor components: 20 percent

Description of Massena

Setting

Landform: Drumlinoid ridges, hills, till plains

Landform position (two-dimensional): Footslope, summit

Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy till dominated by siliceous rocks with varying proportions of

limestone

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: About 12 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent Available water capacity: Moderate (about 7.0 inches)

Interpretive groups

Farmland classification: Prime farmland if drained

Land capability (nonirrigated): 3w Hydrologic Soil Group: C/D

Typical profile

0 to 7 inches: Silt loam 7 to 33 inches: Loam

33 to 72 inches: Fine sandy loam

Minor Components

Sun

Percent of map unit: 10 percent

Landform: Depressions

Georgia

Percent of map unit: 5 percent

Punsit

Percent of map unit: 5 percent

NwC—Nassau-Cardigan complex, rolling, very rocky

Map Unit Setting

Elevation: 600 to 1,800 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Cardigan and similar soils: 40 percent Nassau and similar soils: 40 percent Minor components: 20 percent

Description of Nassau

Setting

Landform: Benches, ridges, till plains

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Channery loamy till derived mainly from local slate or shale

Properties and qualities

Slope: 5 to 15 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low

(0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.7 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s Hydrologic Soil Group: D

Typical profile

0 to 5 inches: Channery silt loam 5 to 16 inches: Very channery silt loam 16 to 20 inches: Unweathered bedrock

Description of Cardigan

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till or colluvium derived from phyllite, slate, shale, and schist

Properties and qualities

Slope: 5 to 15 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low

(0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 4.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s

Hydrologic Soil Group: C

Typical profile

0 to 8 inches: Channery silt loam 8 to 20 inches: Channery loam 20 to 30 inches: Channery silt loam 30 to 34 inches: Unweathered bedrock

Minor Components

Dutchess

Percent of map unit: 9 percent

Rock outcrop

Percent of map unit: 5 percent

Unnamed soils, very shallow

Percent of map unit: 5 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

NwD—Nassau-Cardigan complex, hilly, very rocky

Map Unit Setting

Elevation: 600 to 1,800 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Nassau and similar soils: 45 percent Cardigan and similar soils: 30 percent Minor components: 25 percent

Description of Nassau

Setting

Landform: Benches, ridges, till plains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Channery loamy till derived mainly from local slate or shale

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low

(0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.7 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: D

Typical profile

0 to 5 inches: Channery silt loam 5 to 16 inches: Very channery silt loam 16 to 20 inches: Unweathered bedrock

Description of Cardigan

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till or colluvium derived from phyllite, slate, shale, and schist

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low

(0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 4.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: C

Typical profile

0 to 8 inches: Channery silt loam 8 to 20 inches: Channery loam 20 to 30 inches: Channery silt loam 30 to 34 inches: Unweathered bedrock

Minor Components

Dutchess

Percent of map unit: 10 percent

Sun

Percent of map unit: 10 percent Landform: Depressions

Rock outcrop

Percent of map unit: 5 percent

NxE—Nassau-Rock outcrop complex, steep

Map Unit Setting

Elevation: 600 to 1,800 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Nassau and similar soils: 45 percent

Rock outcrop: 30 percent Minor components: 25 percent

Description of Nassau

Setting

Landform: Benches, ridges, till plains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Channery loamy till derived mainly from local slate or shale

Properties and qualities

Slope: 25 to 45 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low

(0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.7 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: D

Typical profile

0 to 5 inches: Channery silt loam 5 to 16 inches: Very channery silt loam 16 to 20 inches: Unweathered bedrock

Description of Rock Outcrop

Properties and qualities

Slope: 25 to 45 percent

Depth to restrictive feature: 0 inches to lithic bedrock

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Typical profile

0 to 60 inches: Unweathered bedrock

Minor Components

Cardigan

Percent of map unit: 10 percent

Dutchess

Percent of map unit: 10 percent

Sun

Percent of map unit: 5 percent Landform: Depressions

NxF—Nassau-Rock outcrop complex, very steep

Map Unit Setting

Elevation: 600 to 1,800 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Nassau and similar soils: 50 percent

Rock outcrop: 30 percent Minor components: 20 percent

Description of Nassau

Setting

Landform: Benches, ridges, till plains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Channery loamy till derived mainly from local slate or shale

Properties and qualities

Slope: 45 to 65 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low

(0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.7 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s Hydrologic Soil Group: D

Typical profile

0 to 5 inches: Channery silt loam 5 to 16 inches: Very channery silt loam 16 to 20 inches: Unweathered bedrock

Description of Rock Outcrop

Properties and qualities

Slope: 45 to 70 percent

Depth to restrictive feature: 0 inches to lithic bedrock

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7s

Typical profile

0 to 60 inches: Unweathered bedrock

Minor Components

Cardigan

Percent of map unit: 10 percent

Sun

Percent of map unit: 10 percent

Landform: Depressions

Pc—Palms muck

Map Unit Setting

Elevation: 250 to 1,500 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Palms and similar soils: 80 percent Minor components: 20 percent

Description of Palms

Setting

Landform: Swamps, marshes

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Organic material over loamy glacial drift

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 1.98 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 20 percent Available water capacity: Very high (about 17.4 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 5w Hydrologic Soil Group: B/D

Typical profile

0 to 12 inches: Muck 12 to 30 inches: Muck

30 to 80 inches: Gravelly fine sandy loam

Minor Components

Carlisle

Percent of map unit: 10 percent Landform: Swamps, marshes

Sun

Percent of map unit: 5 percent Landform: Depressions

Fluvaquents

Percent of map unit: 3 percent Landform: Flood plains

Udifluvents

Percent of map unit: 2 percent

Landform: Marshes

Pg—Pawling silt loam

Map Unit Setting

Elevation: 50 to 500 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Pawling and similar soils: 80 percent Minor components: 20 percent

Description of Pawling

Setting

Landform: Flood plains

Landform position (two-dimensional): Summit Landform position (three-dimensional): Talf

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Loamy over sandy and gravelly alluvium

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 18 to 24 inches Frequency of flooding: OccasionalNone

Frequency of ponding: None

Calcium carbonate, maximum content: 2 percent Available water capacity: Moderate (about 6.6 inches)

Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 5w Hydrologic Soil Group: B/D

Typical profile

0 to 8 inches: Silt loam 8 to 33 inches: Silt loam

33 to 72 inches: Very gravelly sand

Minor Components

Linlithgo

Percent of map unit: 10 percent

Wayland

Percent of map unit: 5 percent

Landform: Flood plains

Wappinger

Percent of map unit: 5 percent

Ps-Pits, gravel

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Pits, gravel: 70 percent Minor components: 30 percent

Description of Pits, Gravel

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 8s

Typical profile

0 to 6 inches: Very gravelly sand

6 to 60 inches: Very gravelly coarse sand

Minor Components

Udorthents

Percent of map unit: 10 percent

Copake

Percent of map unit: 5 percent

Fredon

Percent of map unit: 5 percent Landform: Depressions

Halsey

Percent of map unit: 5 percent Landform: Depressions

Hoosic

Percent of map unit: 5 percent

SkB—Stockbridge silt loam, 3 to 8 percent slopes

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Stockbridge and similar soils: 80 percent

Minor components: 20 percent

Description of Stockbridge

Setting

Landform: Drumlinoid ridges, hills, till plains Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Calcareous loamy till

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr) Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Farmland classification: All areas are prime farmland

Land capability (nonirrigated): 2e

Hydrologic Soil Group: C

Typical profile

0 to 6 inches: Silt loam 6 to 23 inches: Silt loam 23 to 80 inches: Silt loam

Minor Components

Georgia

Percent of map unit: 5 percent

Galway

Percent of map unit: 4 percent

Massena

Percent of map unit: 4 percent

Charlton

Percent of map unit: 3 percent

Bernardston

Percent of map unit: 2 percent

Farmington

Percent of map unit: 1 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

SkC—Stockbridge silt loam, 8 to 15 percent slopes

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Stockbridge and similar soils: 80 percent

Minor components: 20 percent

Description of Stockbridge

Settina

Landform: Drumlinoid ridges, hills, till plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Calcareous loamy till

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 3e

Hydrologic Soil Group: C

Typical profile

0 to 6 inches: Silt loam 6 to 23 inches: Silt loam 23 to 80 inches: Silt loam

Minor Components

Georgia

Percent of map unit: 5 percent

Galway

Percent of map unit: 4 percent

Massena

Percent of map unit: 4 percent

Charlton

Percent of map unit: 3 percent

Bernardston

Percent of map unit: 2 percent

Farmington

Percent of map unit: 1 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

SkD—Stockbridge silt loam, 15 to 25 percent slopes

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Stockbridge and similar soils: 80 percent

Minor components: 20 percent

Description of Stockbridge

Setting

Landform: Drumlinoid ridges, hills, till plains Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Calcareous loamy till

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: C

Typical profile

0 to 6 inches: Silt loam 6 to 23 inches: Silt loam 23 to 80 inches: Silt loam

Minor Components

Bernardston

Percent of map unit: 5 percent

Charlton

Percent of map unit: 5 percent

Galway

Percent of map unit: 4 percent

Georgia

Percent of map unit: 4 percent

Farmington

Percent of map unit: 1 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

SkE—Stockbridge silt loam, 25 to 45 percent slopes

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Stockbridge and similar soils: 85 percent

Minor components: 15 percent

Description of Stockbridge

Setting

Landform: Drumlinoid ridges, hills, till plains Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Calcareous loamy till

Properties and qualities

Slope: 25 to 45 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 7e

Hydrologic Soil Group: C

Typical profile

0 to 6 inches: Silt loam 6 to 23 inches: Silt loam 23 to 80 inches: Silt loam

Minor Components

Charlton

Percent of map unit: 5 percent

Bernardston

Percent of map unit: 4 percent

Galway

Percent of map unit: 4 percent

Farmington

Percent of map unit: 1 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

SmC—Stockbridge-Farmington complex, rolling, rocky

Map Unit Setting

Elevation: 100 to 900 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Stockbridge and similar soils: 50 percent Farmington and similar soils: 30 percent

Minor components: 20 percent

Description of Stockbridge

Setting

Landform: Drumlinoid ridges, hills, till plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Calcareous loamy till

Properties and qualities

Slope: 5 to 16 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 3e

Hydrologic Soil Group: C

Typical profile

0 to 6 inches: Silt loam 6 to 23 inches: Silt loam 23 to 80 inches: Silt loam

Description of Farmington

Setting

Landform: Benches, ridges, till plains

Landform position (two-dimensional): Shoulder

Landform position (three-dimensional): Crest

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till or congeliturbate derived from limestone, dolomite, shale, and sandstone, and in many places mixed with wind and water deposits

Properties and qualities

Slope: 5 to 16 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/

hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent Available water capacity: Very low (about 2.1 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 6s

Hydrologic Soil Group: D

Typical profile

0 to 7 inches: Loam

7 to 15 inches: Very fine sandy loam 15 to 19 inches: Unweathered bedrock

Minor Components

Galway

Percent of map unit: 10 percent

Georgia

Percent of map unit: 5 percent

Massena

Percent of map unit: 3 percent

Rock outcrop

Percent of map unit: 1 percent

Sun

Percent of map unit: 1 percent Landform: Depressions

SmD—Stockbridge-Farmington complex, hilly, rocky

Map Unit Setting

Elevation: 100 to 900 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Stockbridge and similar soils: 50 percent Farmington and similar soils: 30 percent

Minor components: 20 percent

Description of Stockbridge

Setting

Landform: Drumlinoid ridges, hills, till plains
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Calcareous loamy till

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 8.4 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 4e

Hydrologic Soil Group: C

Typical profile

0 to 6 inches: Silt loam 6 to 23 inches: Silt loam 23 to 80 inches: Silt loam

Description of Farmington

Setting

Landform: Benches, ridges, till plains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy till or congeliturbate derived from limestone, dolomite, shale, and sandstone, and in many places mixed with wind and water deposits

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/

hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent Available water capacity: Very low (about 2.1 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s Hydrologic Soil Group: D

Typical profile

0 to 7 inches: Loam

7 to 15 inches: Very fine sandy loam 15 to 19 inches: Unweathered bedrock

Minor Components

Galway

Percent of map unit: 10 percent

Sun

Percent of map unit: 9 percent Landform: Depressions

Rock outcrop

Percent of map unit: 1 percent

Su-Sun silt loam

Map Unit Setting

Elevation: 600 to 1,800 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Sun and similar soils: 80 percent Minor components: 20 percent

Description of Sun

Setting

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Loamy till derived primarily from limestone and sandstone, with a

component of schist, shale, or granitic rocks in some areas

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr) Depth to water table: About 0 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Moderate (about 6.2 inches)

Interpretive groups

Farmland classification: Farmland of statewide importance

Land capability (nonirrigated): 4w Hydrologic Soil Group: C/D

Typical profile

0 to 4 inches: Silt loam 4 to 22 inches: Loam

22 to 80 inches: Gravelly loam

Minor Components

Canandaigua

Percent of map unit: 5 percent Landform: Depressions

Massena

Percent of map unit: 5 percent

Palms

Percent of map unit: 5 percent Landform: Marshes, swamps

Sun, stony

Percent of map unit: 5 percent Landform: Depressions

Ud—Udorthents, smoothed

Map Unit Setting

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Udorthents, smoothed, and similar soils: 75 percent

Minor components: 25 percent

Description of Udorthents, Smoothed

Properties and qualities

Slope: 0 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.06 to 5.95 in/hr)

Depth to water table: About 36 to 72 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Low (about 5.5 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 6s Hydrologic Soil Group: A

Typical profile

0 to 4 inches: Gravelly loam 4 to 70 inches: Very gravelly loam

Minor Components

Urban land

Percent of map unit: 10 percent

Udorthents, wet substratum

Percent of map unit: 10 percent

Unnamed soils, undisturbed

Percent of map unit: 4 percent

Rock outcrop

Percent of map unit: 1 percent

Ue—Udorthents, wet substratum

Map Unit Setting

Elevation: 50 to 2,400 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Udorthents, wet substratum, and similar soils: 80 percent

Minor components: 20 percent

Description of Udorthents, Wet Substratum

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.06 to 5.95 in/hr)

Depth to water table: About 12 to 36 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent Available water capacity: Low (about 5.5 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 5w

Hydrologic Soil Group: B

Typical profile

0 to 4 inches: Gravelly loam 4 to 72 inches: Very gravelly loam

Minor Components

Udorthents, smoothed

Percent of map unit: 10 percent

Urban land

Percent of map unit: 5 percent

Unnamed soils, undisturbed

Percent of map unit: 4 percent

Rock outcrop

Percent of map unit: 1 percent

W-Water

Map Unit Setting

Mean annual precipitation: 41 to 47 inches

Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Water: 100 percent

Wy—Wayland silt loam

Map Unit Setting

Elevation: 200 to 1,500 feet

Mean annual precipitation: 41 to 47 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Map Unit Composition

Wayland and similar soils: 80 percent Minor components: 20 percent

Description of Wayland

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Silty and clayey alluvium washed from uplands that contain some

calcareous drift

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr) Depth to water table: About 0 inches Frequency of flooding: FrequentNone

Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent Available water capacity: High (about 11.0 inches)

Interpretive groups

Farmland classification: Not prime farmland

Land capability (nonirrigated): 5w Hydrologic Soil Group: C/D

Typical profile

0 to 9 inches: Silt loam 9 to 80 inches: Silt loam

Minor Components

Pawling

Percent of map unit: 5 percent Landform: Depressions

Linlithgo

Percent of map unit: 5 percent

Fluvaquents

Percent of map unit: 3 percent Landform: Flood plains

Palms

Percent of map unit: 3 percent Landform: Marshes, swamps

Carlisle

Percent of map unit: 2 percent Landform: Swamps, marshes

Udifluvents

Percent of map unit: 2 percent

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

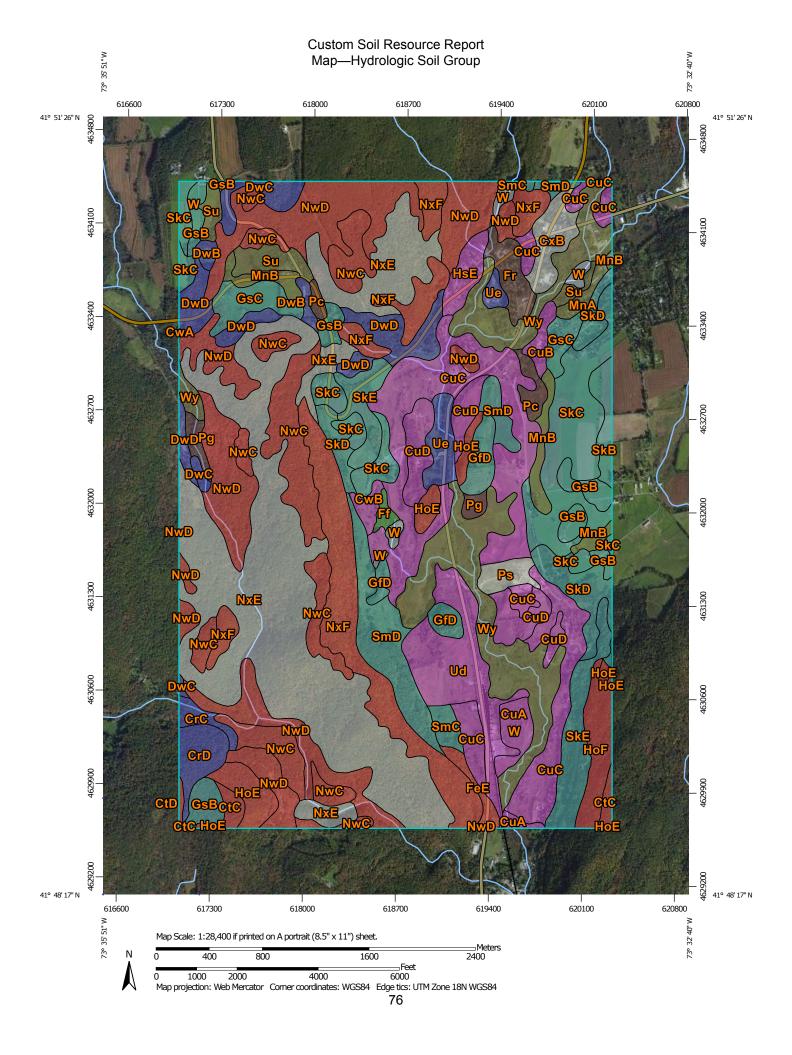
Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.


Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Custom Soil Resource Report

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24,000. Area of Interest (AOI) С Area of Interest (AOI) C/D Please rely on the bar scale on each map sheet for map Soils D measurements. Soil Rating Polygons Not rated or not available Α Source of Map: Natural Resources Conservation Service **Water Features** Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov A/D Coordinate System: Web Mercator (EPSG:3857) Streams and Canals В Transportation Maps from the Web Soil Survey are based on the Web Mercator ---Rails projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Interstate Highways Albers equal-area conic projection, should be used if more accurate C/D **US Routes** calculations of distance or area are required. Major Roads This product is generated from the USDA-NRCS certified data as of Not rated or not available 0 Local Roads the version date(s) listed below. Soil Rating Lines **Background** Α Aerial Photography Soil Survey Area: Dutchess County, New York Survey Area Data: Version 9, Sep 21, 2012 A/D Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Mar 28, 2011—Oct 9, 2011 The orthophoto or other base map on which the soil lines were Not rated or not available compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting **Soil Rating Points** of map unit boundaries may be evident. A/D В B/D

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CrC	Charlton-Chatfield complex, rolling, rocky	В	14.4	0.4%
CrD	Charlton-Chatfield complex, hilly, rocky	В	37.0	0.9%
CtC	Chatfield-Hollis complex, rolling, very rocky	D	18.4	0.5%
CtD	Chatfield-Hollis complex, hilly, very rocky	D	2.8	0.1%
CuA	Copake gravelly silt loam, nearly level	А	30.1	0.8%
CuB	Copake gravelly silt loam, undulating	А	14.8	0.4%
CuC	Copake gravelly silt loam, rolling	А	363.4	9.3%
CuD	Copake gravelly silt loam, hilly	А	87.5	2.2%
CwA	Copake channery silt loam, fan, 0 to 3 percent slopes	A	0.4	0.0%
CwB	Copake channery silt loam, fan, 3 to 8 percent slopes	A	11.9	0.3%
СхВ	Copake-Urban land complex, undulating		39.3	1.0%
DwB	Dutchess-Cardigan complex, undulating, rocky	В	14.6	0.4%
DwC	Dutchess-Cardigan complex, rolling, rocky	В	32.2	0.8%
DwD	Dutchess-Cardigan complex, hilly, rocky	В	94.6	2.4%
FeE	Farmington-Rock outcrop complex, steep	D	13.4	0.3%
Ff	Fluvaquents-Udifluvents complex, frequently flooded	A/D	7.2	0.2%
Fr	Fredon silt loam	B/D	33.2	0.8%
GfD	Galway-Farmington complex, hilly	С	45.8	1.2%
GsB	Georgia silt loam, 3 to 8 percent slopes	С	78.0	2.0%
GsC	Georgia silt loam, 8 to 15 percent slopes	С	57.2	1.5%
HoE	Hollis-Chatfield-Rock outcrop complex, steep	D	57.4	1.5%

Custom Soil Resource Report

Нус	drologic Soil Group— Sumn	nary by Map Unit — Dut	chess County, New York (NY	027)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
HoF	Hollis-Chatfield-Rock outcrop complex, very steep	D	49.7	1.3%
HsE	Hoosic gravelly loam, 25 to 45 percent slopes	А	27.4	0.7%
MnA	Massena silt loam, 0 to 3 percent slopes	C/D	12.2	0.3%
MnB	Massena silt loam, 3 to 8 percent slopes	C/D	46.1	1.2%
NwC	Nassau-Cardigan complex, rolling, very rocky	D	237.2	6.1%
NwD	Nassau-Cardigan complex, hilly, very rocky	D	410.3	10.5%
NxE	Nassau-Rock outcrop complex, steep		697.8	17.8%
NxF	Nassau-Rock outcrop complex, very steep	D	258.3	6.6%
Pc	Palms muck	B/D	21.4	0.5%
Pg	Pawling silt loam	B/D	19.1	0.5%
Ps	Pits, gravel		21.2	0.5%
SkB	Stockbridge silt loam, 3 to 8 percent slopes	С	35.7	0.9%
SkC	Stockbridge silt loam, 8 to 15 percent slopes	С	202.5	5.2%
SkD	Stockbridge silt loam, 15 to 25 percent slopes	С	82.4	2.1%
SkE	Stockbridge silt loam, 25 to 45 percent slopes	С	103.8	2.6%
SmC	Stockbridge-Farmington complex, rolling, rocky	С	16.0	0.4%
SmD	Stockbridge-Farmington complex, hilly, rocky	С	113.5	2.9%
Su	Sun silt loam	C/D	46.2	1.2%
Ud	Udorthents, smoothed	A	126.9	3.2%
Ue	Udorthents, wet substratum	В	39.5	1.0%
W	Water		19.9	0.5%
Wy	Wayland silt loam	C/D	277.4	7.1%
Totals for Area of Inter	rest	ı	3,918.4	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition

Custom Soil Resource Report

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie. The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Higher

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://soils.usda.gov/

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://soils.usda.gov/

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://soils.usda.gov/

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.glti.nrcs.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://soils.usda.gov/

Custom Soil Resource Report

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

TransTech Engineering Services, PC • 1594 State Street • Schenectady, NY 12304 • ph: 1.800.724.6306 • fx: 518.370.5538

GEOTECHNICAL ENGINEERING REPORT PROPOSED APWAN DEVELOPMENT SILO RIDGE COUNTRY CLUB 4651 ROUTE 22 AMENIA, NEW YORK

PREPARED FOR:

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360
White Plains, New York 10606

PREPARED BY:

TransTech Engineering Services, P.C. for TransTech Geotechnical Services 1594 State Street Schenectady, New York 12304

October 14, 2013 TransTech Project No. G13-3523

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SUBSURFACE EXPLORATION	1
3.0	LABORATORY TESTING	2
4.0	INFILTRATION TEST RESULTS	2
5.0	SUBSURFACE CONDITIONS	3
	5.1 Soil Profile	3
	5.2 Bedrock Conditions	3
	5.3 Groundwater Conditions	4
6.0	GEOTECHNICAL RECOMMENDATIONS	5
	6.1 General	5
	6.2 Site Preparation	6
	6.3 Spread Foundations	7
	6.4 Slabs-on-Grade	7
	6.5 Lateral Earth Pressure Design Parameters	8
	6.6 Basement/Retaining Wall Drainage and Backfill	9
	6.7 Seismic Design	9
	6.8 Pavement Design	10
	6.9 Temporary and Permanent Cut and Fill Slopes	11
7.0	CONCLUDING REMARKS	12
FIGU	JRES	
	JRE No. 1 – SITE LOCATION MAP JRE No. 2 – SUBSURFACE EXPLORATION PLAN	
APPE	ENDICES	
APPE APPE APPE	ENDIX A – SUBSURFACE EXPLORATION LOGS ENDIX B – TEST PIT PHOTOS ENDIX C – LABORATORY TEST RESULTS ENDIX D – FILL MATERIAL AND PLACEMENT RECOMMENDATIONS ENDIX E – INFORMATION REGARDING THIS GEOTECHNICAL ENGINEERING REPORT	

1.0 INTRODUCTION

This report presents the results of a subsurface exploration program and geotechnical engineering evaluation completed by TransTech Engineering Services, P.C., on behalf of TransTech Geotechnical Services, for the proposed Apwan Development planned at Silo Ridge Country Club in the Town of Amenia, New York. VHB Engineering, Surveying and Landscape Architecture, P.C. (VHB) retained TransTech Geotechnical Services to complete this work, which was done in general accordance with our August 21, 2013 Proposal.

Based on the information provided by VHB, we understand the project will consist of a new residential development centered around the existing Silo Ridge Country Club. The development will include a new Lodge/Clubhouse with restaurant, Spa/Fitness center and Kid's Barn arranged around a central village green. The development will also include Custom Homes, Village Green Homes, Townhomes and Cottages.

The site topography is generally comprised of rolling hills with a mixture of open golf course areas and wooded areas. The site is flanked to the north and west by taller ridges. Exposed ledge rock is exposed at various locations and there are several ponds located in the lower-lying areas of the site. The approximate location of the site is shown on the attached Figure No. 1.

2.0 SUBSURFACE EXPLORATION

The subsurface exploration program consisted of twelve (12) test borings, seventeen (17) probe borings, six (6) test pits and six (6) infiltration tests. The test borings were designated as BB-1 through BB-7, BB-8A and BB-9 through BB-12. The probe borings were designated as GB-1 through GB-17 and the test pits were designated as DT-1 through DT-6. The test borings were generally located in proposed building areas. The test boring, probe boring and test pit locations were established and marked in the field by others. The approximate boring and test pit locations are shown on the attached Figure No. 2.

Auger refusal was encountered in test borings BB-1, BB-3, BB-5, BB-8, BB-9, BB-10, BB-11 and BB-12 at depths of 11.0, 44.0, 21.0, 24.0, 19.5, 19.5, 20.0 and 11.0 feet, respectively. The remaining test borings were terminated at a depth of 25 feet.

Auger refusal was encountered in probe borings GB-3, GB-8, GB-9, GB-13, GB-15 and GB-17 at depths of 19.0, 11.0, 2.0, 11.0, 18.0 and 11.0 feet, respectively. The remaining probe borings were terminated at a depth of 20 feet, with the exception of probe boring GB-6 which was terminated at a depth of 25 feet.

The test borings and probe borings were made with a Central Mine Equipment (CME) model 75 all-terrain drill rig, using hollow stem auger techniques. Split spoon samples

and Standard Penetration Tests (SPTs) were taken in the test borings continuously from the ground surface to a depth of 10 feet and at intervals of 5 feet thereafter. The split spoon sampling and SPTs were completed in general accordance with ASTM D 1586 - "Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils". No sampling was performed in the probe borings.

The test pits were excavated by others using a rubber tire backhoe. The test pits were excavated prior to our inspector's arrival and were left open for our observation. Photos of the test pit excavations are presented in Appendix B.

Infiltration testing was performed by TransTech at each test pit location. The infiltration tests were performed using 4 inch diameter steel casing, which was installed to a depth of 4 feet below grade.

The test boring and test pit logs were prepared by a geotechnical engineer based on visual observation of the recovered soil and rock samples and review of the driller's field notes. The soil samples were described based on a visual/manual estimation of the grain size distribution, along with characteristics such as color, relative density, consistency, moisture, etc. The test boring and test pit logs are presented in Appendix A, along with general information and a key of terms and symbols used to prepare the logs.

3.0 LABORATORY TESTING

Laboratory testing was performed on selected soil samples recovered from the test borings. The laboratory tests were performed to confirm the visual soil classifications. The laboratory testing included the following tests:

- Natural moisture content testing was performed on ten (10) samples in accordance with ASTM D 2216 – "Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass."
- Grain size analysis testing was performed on ten (10) samples in general accordance with ASTM D 422 "Standard Test Method for Particle-Size Analysis of Soils", and ASTM D 1140 "Standard Test Method for Amount of Material in Soils Finer Than the No. 200 Sieve."

The laboratory test results are presented in Appendix C.

4.0 INFILTRATION TEST RESULTS

Infiltration testing was performed in 4 inch diameter steel cased holes at a depth of 4 feet in general accordance with the New York State Stormwater Design Manual, Appendix D. The holes were pre-soaked overnight prior to the infiltration testing. It was observed that the pre-soak water was still present in the steel casing after 24 hours at each infiltration

test location. Water was added to achieve a 24 inch water depth at each location and the water levels were recorded over a period of 3 hours at each location. The infiltration test results are provided in the following table.

Infiltration	Groundwater	Test Depth	Final Infiltration
Test	Depth	(ft)	Rate
Location	(ft)		(inches/hour)
DT-1	> 11	4	0.25
DT-2	7.5	4	0
DT-3	6.5	4	0.25
DT-4	> 9.5	4	0
DT-5	> 9.7	4	0
DT-6	> 11.3	4	0

5.0 SUBSURFACE CONDITIONS

5.1 Soil Profile

The subsurface profile encountered at the test boring locations generally consisted of indigenous overburden soils, with the exception of test borings BB-5, BB-6 and BB-10 where possible fill type soils were encountered overlying indigenous overburden soils. The possible fill type soils appeared to consist of re-worked indigenous soils. The possible fill type soils and indigenous soils consisted of varying fractions of clay, silt, sand and gravel soils with zones containing intermixed cobbles at various depths and locations.

SPT "N" values obtained within the cohesive possible fill type soils ranged from 5 to 17 indicating the consistency of these soils varies from "medium" to "very stiff". SPT "N" values obtained within the cohesionless possible fill type soils ranged from 12 to 26 indicating a "firm" relative density. SPT "N" values obtained within the cohesive indigenous soils ranged from 1 to 46 indicating the consistency of these soils varies from "very soft" to "very stiff". SPT "N" values obtained in the cohesionless indigenous overburden soils ranged from 3 to greater than 50 indicating the relative density of these soils varies from "very loose" to "very compact".

5.2 Bedrock Conditions

Auger refusal (apparent top of bedrock) was encountered in the test borings and probe borings at depths ranging from 2.0 to 44.0 feet. In addition, highly decomposed and highly weathered bedrock was encountered in the test borings at depths ranging from 4 to 23 feet. At many locations, the test borings were advanced many feet into the top of the highly decomposed and weathered bedrock before reaching auger refusal, indicating the top of more sound rock had been encountered.

The following table presents the auger refusal depths (apparent top of more sound bedrock) for each test boring and probe boring.

	Approximate Depth of Auger Refusal
Test Boring	(Apparent Top of Bedrock)
No.	(feet)
BB-1	11.0
BB-2	NA
BB-3	NA
BB-4	NA
BB-5	21.0
BB-6	NA
BB-7	NA
BB-8	24.0
BB-9	19.5
BB-10	19.5
BB-11	20.0
BB-12	11.0
GB-1	NA
GB-2	NA
GB-3	19.0
GB-4	NA
GB-5	NA
GB-6	NA
GB-7	NA
GB-8	11.0
GB-9	2.0
GB-10	NA
GB-11	NA
GB-12	NA
GB-13	11.0
GB-14	NA
GB-15	18.0
GB-16	NA
GB-17	11.0

5.3 Groundwater Conditions

Groundwater was encountered in test borings BB-1, BB-2, BB-3, BB-4, BB-5 and BB-8 at depths ranging from 6.6 to 19.0 feet. Groundwater was also present in test pits DT-2 and DT-3 at depths of 7.5 and 6.5 feet, respectively. The following table presents the depths at which groundwater conditions were encountered in the test borings and test pits.

Test Boring	Depth to Free Standing Water
No.	(feet)
BB-1	10.3
BB-2	19.0
BB-3	6.6
BB-4	17.2*
BB-5	14.7*
BB-6	NA
BB-7	NA
BB-8	12.8
BB-9	NA
BB-10	NA
BB-11	NA
BB-12	NA
DT-1	NA
DT-2	7.5*
DT-3	6.5*
DT-4	NA
DT-5	NA
DT-6	NA

^{*}Indicates groundwater level measured 24 hours after drilling/excavation. NA indicates free standing water was not present.

It should be expected that groundwater conditions could vary with changes in soil conditions, precipitation and seasonal conditions.

6.0 GEOTECHNICAL RECOMMENDATIONS

6.1 General

The primary geotechnical considerations impacting development of the site are the presence of existing fill type soils and bedrock. We recommend that existing fill type soils, which are associated with previous grading activities at the site, be removed where present beneath proposed building areas. Undercut excavations on the order of approximately 4 to 8 feet will be required to remove possible fill type soils at test boring locations BB-5, BB-6 and BB-10. Very soft soil conditions were encountered at the transition from possible fill type soils to indigenous soils in test boring BB-6 from a depth of 8 to 10 feet. These very soft soils are susceptible to potentially excessive settlement under building foundation loads and should be undercut and replaced with imported Structural Fill within proposed building areas. Recommendations for Structural Fill material along with placement and compaction recommendations are presented in Appendix D.

It is also anticipated that bedrock could be encountered in relatively shallow foundation or utility excavations in some areas. Based on the conditions encountered in the test borings, it is anticipated that the upper more weathered and fractured bedrock zone can be excavated using a large track-mounted excavator equipped with rock teeth or a large bulldozer equipped with a single-tooth ripper. However, it is possible that zones of more competent bedrock (i.e. auger refusal depths encountered in the borings) could be encountered that may require controlled blasting to loosen the rock for excavation. Blasting should be performed by a licensed contractor and should be controlled to limit the maximum peak particle velocity (PPV) to less than two (2) inches per second (ips) at the property limits and one (1) ips at the nearest adjacent occupied structure. In addition, the peak airblast overpressure limit should be controlled to less than 0.014 pounds per square inch (psi) at the nearest adjacent occupied structure.

We point out that the controlled blasting guidelines described above are intended to prevent damage to existing structures and greatly exceed the threshold at which humans will notice vibration (approximately 0.02 ips). Accordingly, we recommend that blast vibrations be monitored and recorded at the property limits during each blast event to confirm that the limits recommended above are not exceeded. In addition, we recommend that pre-condition surveys be performed on all adjacent structures to document the condition of existing structures prior to the start of blasting operations.

No blasting should be performed within proposed building areas due to the potential for over-breakage, which could impact the integrity of building foundations.

6.2 Site Preparation

Existing topsoil, vegetation, and any other deleterious materials within the proposed building and pavement areas should be removed. Any existing fill type soils should also be removed within proposed building areas and extending 10 feet beyond the building footprint. Following removal of surface materials and excavation to design subgrade elevations, the exposed subgrades should be evaluated by a geotechnical engineer. Exposed soil subgrades should be thoroughly proof-rolled using a loaded tandem axle dump truck prior to any required fill placement. The proofrolling should be observed by a geotechnical engineer. Any areas that appear wet, loose, soft, unstable or otherwise unsuitable should be undercut based on guidance provided by the geotechnical engineer.

Undercut excavations (if required) beneath proposed foundation, floor slab and pavement areas should be backfilled with controlled imported Structural Fill. Recommendations for Structural Fill material, along with placement and compaction requirements, are presented in Appendix D. Placement of all fill and/or backfill beneath proposed building and pavement areas should be observed and tested by qualified geotechnical personnel.

It is anticipated that the on-site sand and gravel soils can be re-used as Structural Fill to raise existing site grades. The on-site clay and silt soils will lose strength and become unstable if

they become wet during construction and are not well suited for re-use as Structural Fill beneath building areas. It should be anticipated that cut and fill grading activities will require separating the sand and gravel soil layers from the silt and clay soil layers for re-use as Structural Fill beneath building areas.

6.3 Spread Foundations

It is our opinion that spread foundations can be used to support the proposed buildings. Spread foundations should bear on firm, undisturbed indigenous soil bearing grades. Existing fill type soils should be removed where present beneath proposed foundation bearing grades. The exposed soil bearing grades for foundations should be compacted to densify any soils loosened by the excavation process.

The exposed bearing grades should be observed and evaluated by a geotechnical engineer. Any soft or otherwise unsuitable soils should be undercut and replaced with compacted imported Structural Fill based on guidance provided by the geotechnical engineer. All final bearing grades should be firm, stable and free of loose soil, mud, water, frost or other deleterious materials.

Continuous wall foundations should be at least 1.5 feet in width and column/individual foundations should be at least 2.5 feet in width. Exterior foundations of heated spaces and all foundations of unheated spaces should be embedded a minimum of 4.0 feet below finished exterior grades for frost protection. Interior foundations in heated spaces should be embedded a minimum of 1.5 feet below finished floor slab elevation to develop adequate bearing capacity.

Spread foundations, which are designed and constructed in accordance with our recommendations, can be sized using a maximum allowable soil bearing pressure of 3,000 pounds per square foot (psf). The allowable soil bearing pressure is based on a factor of safety of at least 3.0.

It is estimated that spread foundations, sized and properly constructed in accordance with our recommendations, will undergo total settlement of less than 1 inch, and differential settlements should be less than ½ inch.

6.4 Slabs-on-Grade

At-grade floor slabs can be constructed as slab-on-grade following proper site preparation as outlined in Section 6.2 above. A minimum of 6 inches of Subbase Stone, as described in Appendix D, is recommended directly beneath lightly loaded interior slabs-on-grade in heated spaces. The floor slabs can be designed in accordance with procedures recommended by the Portland Cement Association or the American Concrete Institute, using a modulus of subgrade reaction of 150 pounds per cubic inch at the top of the Subbase Stone layer.

Frost heaving of non-vehicle loaded exterior slabs and sidewalks can be minimized by constructing sensitive slab areas (i.e. doorways and sidewalk/pavement transitions) over 18 inches of Drainage Stone, as described in Appendix D. The Drainage Stone layer should have an underdrain within it to provide positive drainage to a suitable downslope outlet. Although this may not eliminate all movement associated with frost heave, it should provide adequate protection against excessive differential frost heave during most winters.

We recommend a vapor barrier be provided beneath interior floor slabs, which are designated to receive a moisture sensitive floor covering, in accordance with the American Concrete Institute (ACI) Guide for Concrete Floor and Slab Construction. It is recommended that the slab-on-grade be constructed such that it floats on the subbase and subgrades and is not structurally connected to, or resting directly on, perimeter walls or column footings in order to limit differential settlement effects.

6.5 Lateral Earth Pressure Design Parameters for Basement/Retaining Walls

The design of basement walls and site retaining walls should be based on lateral earth pressures caused by the load of backfill against the walls and the surcharge effects from permanent or temporary loads. Basement walls, which are designed for restrained or non-yielding conditions, should be designed using "at rest" lateral earth pressures. Site retaining walls, which are designed to "yield" can be designed using "active" lateral earth pressures. The basement and site retaining walls should be backfilled in accordance with the recommendations presented in Section 6.6 below.

The lateral earth pressures can be computed using the following soil parameters where the wall backfill consists of imported Structural Fill, as described in Appendix D, and contains proper foundation drain(s) as discussed below. Water must not be allowed to collect against the backside of the exposed wall section unless the wall is designed for the additional hydrostatic pressure.

Recommended Soil Parameters for Basement Wall Design:

Coefficient of At-Rest Lateral Earth Pressure – 0.50 Coefficient of Active Lateral Earth Pressure – 0.33 Coefficient of Passive Lateral Earth Pressure – 3.00* Coefficient of Sliding Friction – 0.30 Angle of Internal Friction (Structural Fill backfill) – 30 Degrees Total Moist Unit Weight of Soil (Structural Fill backfill) – 120 pcf

* It should be noted that a horizontal displacement of approximately 0.005 x the height of the resisting soils (i.e. embedment depth of footing/wall on the resisting side) is required to achieve the full passive earth pressure coefficient of 3.00. If it is determined that the

magnitude of horizontal displacement of the footing/wall required to achieve the full passive earth pressure is too large, a reduced coefficient of passive earth pressure should be used for design.

6.6 Basement/Retaining Wall Drainage and Backfill

Basement walls and site retaining walls and should be constructed with foundation drainage systems to intercept any perched or trapped groundwater and relieve potential hydrostatic pressures from acting on the walls. The drainage system should consist of a footing drain and pervious media placed against the wall.

The footing drain should include a non-woven drainage/separation geotextile (i.e. Mirafi 160N or suitable equivalent) installed around Drainage Stone, as described in Appendix D, which surrounds a slotted under-drain pipe. The foundation Drainage Stone and surrounding geotextile should extend 1 foot above the drain pipe. The drain pipes should include clean-outs to allow periodic flushing and maintenance of the system. The drain pipes should be set at the bottom of footing elevation and should discharge to a suitable downslope outlet.

Pervious Granular Backfill or a suitable geosynthetic drainage composite should be placed against the walls, above the footing drain, to allow infiltration to the footing drain. Pervious Granular Backfill, if used against the wall, should be at least 2 feet in width. The remaining excavated area beyond the drainage composite or Pervious Granular Backfill should be backfilled with controlled Structural Fill. The Pervious Granular Fill and/or drainage composite against the wall should extend up to about 1 foot below finished exterior grade where it should be capped off with less permeable on-site soils to reduce surface infiltration. Recommendations for Pervious Granular Fill and Structural Fill material are presented in Appendix D.

6.7 Seismic Design

Based on the conditions encountered in the borings, it is our opinion the site should be classified as **Seismic Site Class "D"** according Table 1615.1.1 of the Building Code of New York State.

The mapped spectral accelerations in the project area for Site Class "B" were determined using the USGS online Seismic "Design Maps" web application, which is based on 2008 National Seismic Hazard Map data.

The spectral response accelerations for site class "B" are as follows:

- Short Period Response (S_S) 0.182g
- 1 Second Period Response (S₁) 0.065g

Adjusted Spectral Response Acceleration for Site Class "D":

- Short Period Response (S_{MS}) 0.291g
- 1 Second Period Response (S_{M1}) 0.156g

The corresponding five percent damped design spectral response accelerations (S_{DS} and S_{DI}) are as follows:

- $S_{DS} 0.194g$
- $S_{D1} 0.104g$

6.8 Pavement Design

Pavement design recommendations are provided for a Light Duty Asphalt Concrete Pavement and Commercial Duty Asphalt Concrete Pavement sections. The Light Duty pavement section can be used for car parking areas and the Commercial Duty pavement section should be used for main drive areas. The pavement sections recommended below are based on the assumption that the subgrades will be prepared as discussed in Section 6.2 above.

Light Duty Asphalt Concrete Pavement:

- 1.0 inches Top Course
- 2.0 inches Binder Course
- 10 inches Subbase Course

Commercial Duty Asphalt Concrete Pavement:

- 1.5 inches Top Course
- 2.5 inches Binder Course
- 12 inches Subbase Course
- Woven Geotextile Fabric

We point out that the pavement sections provided above are not intended for heavy construction vehicle traffic. Construction traffic should not be routed across finished pavement areas.

The installation of an underdrain or edge drain is recommended to drain the pavement subbase course and subgrades in order to limit the potential for frost action and improve pavement structure performance and design life.

Proper grading of the pavement structure subgrades is also recommended. Accumulation of water on pavement subgrades should be avoided by grading the subgrade to a slope of at least 2 percent to allow drainage to the underdrains or drainage swale.

The underdrain system must be properly designed, installed and maintained for long term performance. The underdrain system design should include a filtration geotextile (i.e. Mirafi 160N or suitable equivalent), selected considering drainage and filtration, installed around Drainage Stone surrounding a slotted or perforated drain pipe. The Drainage Stone and surrounding geotextile should extend above the drainpipe and should be hydraulically connected to the pavement subbase.

Alternatively, a "geotextile wrapped slotted pipe" system would also be acceptable, if placed in the subbase material provided the subbase layer is thickened along the underdrains. In all cases, the underdrain (i.e. pipe invert) should be set at least 6-inches below the bottom of the overall subbase layer.

Materials for the above pavement structure components should consist of the following:

- A. Asphalt Concrete Top Course NYSDOT Standard Specifications, Item No. 402.12 Hot Mix Asphalt, Top Course.
- B. Asphalt Concrete Binder Course NYSDOT Standard Specifications, Item No. 402.25 Hot Mix Asphalt, Binder Course.
- C. Subbase Course Should comply with NYSDOT Standard Specifications, Item No. 304.12 Type 2 Subbase or Item No. 304.14 Type 4 Subbase.
- D. Woven Geotextile Fabric Woven polypropylene stabilization/separation geotextile (i.e., Mirafi 500X or approved equivalent).

Adjacent geotextile panels should have a minimum overlap of 18 inches. The Subbase Stone should be placed and compacted in accordance with the recommendations presented in Appendix D. Construction of the asphaltic concrete courses (i.e., binder and top) should be performed in accordance with NYSDOT Standard Specification Section 400.

6.9 Temporary and Permanent Cut and Fill Slopes

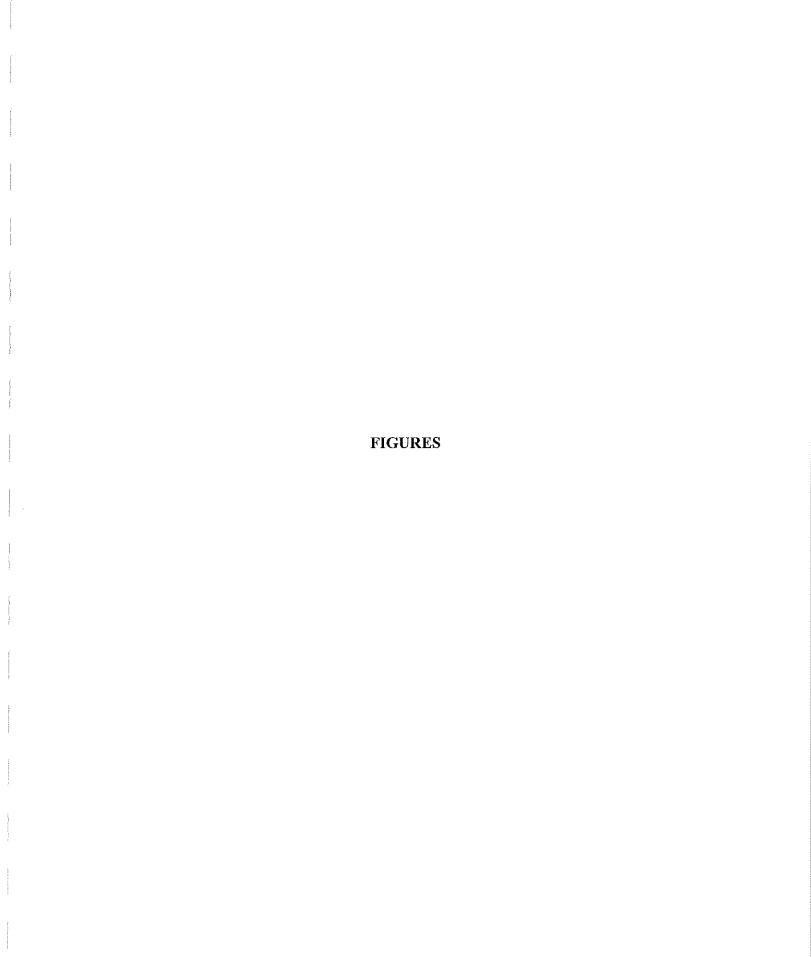
Temporary excavations must be adequately sloped back and/or properly supported (i.e. sheeted, shored, braced, shielded etc.) in accordance with OSHA requirements as a minimum. Based on the test boring and test pit information, it would appear that the overall soil conditions encountered would be generally classified as Type C soil in accordance with OSHA criteria.

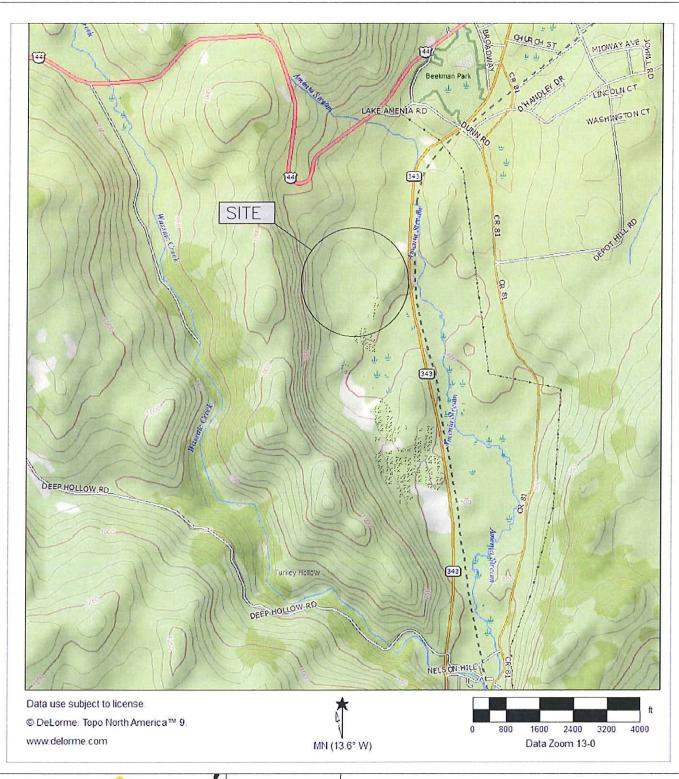
Based on the OSHA Type C soil criteria, unsupported excavations less than 20 feet would need to be sloped backed to at least a 1.5 horizontal (min) to 1 vertical slope. The contractor should confirm the OSHA soil classification and excavation requirements at the time of construction based on actual location and soil and groundwater conditions present. The contractor shall be solely responsible for all excavation safety, including the design of all excavation support systems.

We recommend that permanent cut slopes be sloped back to at least a 2.0 horizontal to 1 vertical slope and permanent fill slopes be sloped back to at least a 3.0 horizontal to 1 vertical slope. It should be understood that cut slopes may require stabilization measures if groundwater is seeping from the slopes. Stabilization measures could include placement of rip-rap or geosynthetic stabilization mats.

7.0 CONCLUDING REMARKS

This report was prepared to assist in planning the design and construction of the proposed Apwan Development planned at Silo Ridge Country Club in the Town of Amenia, New York. The report has been prepared for specific application to this site and this project only.


The recommendations were prepared based on our understanding of the proposed project, as described herein, and through the application of generally accepted soils and foundation engineering practices. No warranties, expressed or implied are made by the conclusions, opinions, recommendations or services provided.


Important information regarding the use and interpretation of this report is presented in Appendix E.

Respectfully Submitted:

TransTech Engineering Services, P.C.

Tod M. Kobik, P.E. Geotechnical Engineer

1594 STATE STREET SCHENECTADY, NEW YORK 12304 PHONE (518) 370-5558 FAX (518) 370-5538 SCALE: AS SHOWN

DRAWN BY: TMK

DATE: 10/14/2013

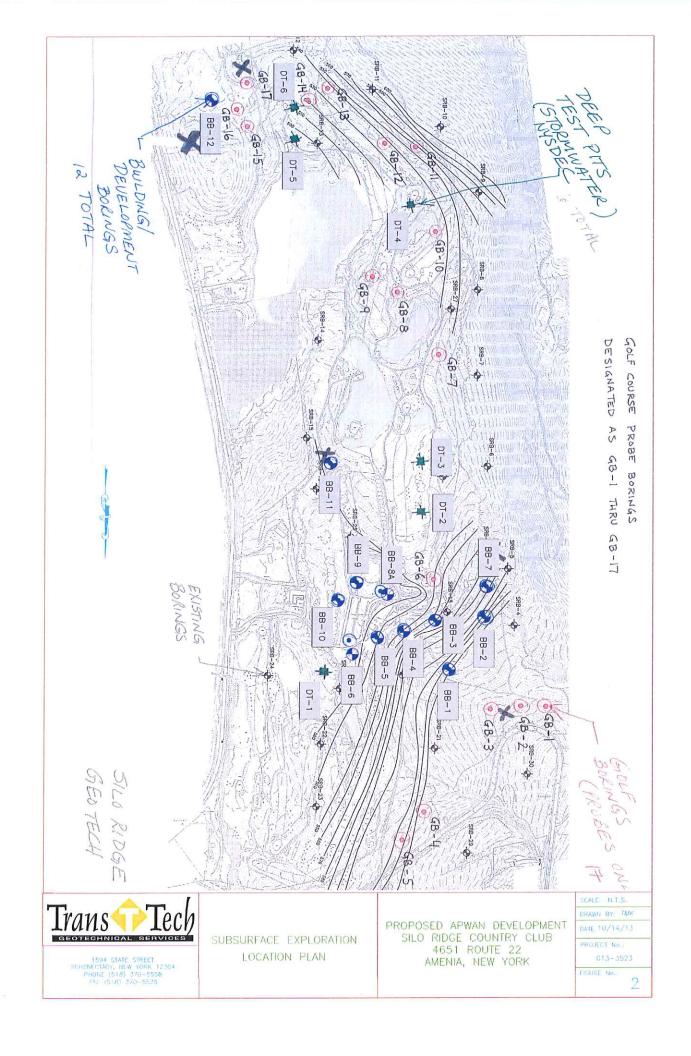

PROJECT No.: G13-3523

FIGURE No.:

1

SITE LOCATION MAP

PROPOSED APWAN DEVELOPMENT SILO RIDGE COUNTRY CLUB 4651 ROUTE 22 AMENIA, NEW YORK

APPENDIX A SUBSURFACE EXPLORATION LOGS

l											
S ¹	ATE FAR NISI	Т:	OF		/2013 /2013		-		Trans Tech SUBSURFACE EXPLORATION LOG	BORING NO. BB-1 PROJ. NO. G13-3523 SURF. ELEV. G.S. G.W. DEPTH See Notes	
PF	ROJE	ECT:	Propo	sed Apv	wan De	velopm	ent	LOCATION: 4651 Route 22			
			Silo R	idge Co	untry C	Club			Amenia, New York		
DEPT	, ES	SAMPLE NO.		BLOWS	ON SA	MPLER	·	REC.	SOIL OR ROCK	NOTES	
(ft.)	SAM	SAN	0/6	6/12	12/18	+	N	(ft.)	CLASSIFICATION	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
-	$\dashv /$	1	2	2	4	7	6	0.8	Brown Loose Fine-Coarse SAND AND CLAY, Little Gravel, Moist	-	
-	1/	2	4	6	6	5	12	1.3	Firm, Grades to "Some" Silt, "Some" Gravel, "Trace" Clay		
-	7				,	10	40	4.0	Description City City Court Fire Court Court Trees		
- 5 -	∜/	3	3	6	4	16	10	1.2	Brown-Gray Firm SILT, Some Fine-Coarse Sand, Trace Gravel, Moist	•	
	17	4	56	55	42	50/0.4	97	1.3	Highly Decomposed Rock, sampled as Gray Very Compact		
-	<u> </u>	5	34	50/0.5			REF	0.7	SILT with rock fragments	REF = Sample spoon refusal	
	\perp	-	34	50/0.5			KEF	0.7		_	
Γ"-	_				······································						
-	-		 			 			Boring terminated with auger refusal at 11.0 feet.	Free standing water was measured at a depth of 10.3'	
-	1									upon completion of drilling	
15-	\dashv									and sampling.	
_											
-	-									-	
- 20-	1									-	
[-	-										
	-				·····					-	
_										-	
- 25-	-									-	
-	1									_	
-	-									_	
-	1									_	
30-	1							\Box		_	

N = NO. BLOWS TO DE	RIVE 2-INCH SPLIT SPOON 12-IN	CHES WITH A 140 LB. PIN WT. FALLING 30-INC	HES PER BLOW	CLASSIFICATION: Visual by	
DRILLER:	J. Burrowbridge	DRILL RIG TYPE :	CME - 75	T. Kobik	
METHOD OF INVESTIGATION: ASTM D1586 using 3.25" I.D. Hollow Stem Augers					

DATE START:	9/12/2013	Trans Tech
INISH:	9/12/2013	DRILLING & SERVICES
		Ditterior Distriction

BORING NO. BB-2 PROJ. NO. G13-3523 CHOC ELEV

SUBSURFACE EXPLORATION LOG

SURF. ELEV.	G.S.
	,
G.W. DEPTH	19.0'

SHEET 1 OF 1 PROJECT: Proposed Apwan Development LOCATION: 4651 Route 22 Silo Ridge Country Club Amenia, New York SAMPLE NO. **BLOWS ON SAMPLER** SOIL OR ROCK REC. DEPTH NOTES (ft.) (ft.) CLASSIFICATION 6/12 12/18 0/6 18/24 N 1.3 Brown Loose Fine-Coarse SAND AND SILT, Little Gravel, 3" Topsoil at ground surface 2 3 4 6 7 2 4 7 11 18 0.7 Brown Firm SILT, Some Fine-Coarse Sand, Trace Gravel, 11 8 4 4 4 8 1.4 Loose, Grades to "Trace" Clay 5 4 0.7 6 4 10 Wet 1.5 Brown Loose Fine-Coarse SAND, Some Silt, Some Gravel, Driller noted "wet" soil layer 2 2 3 1.0 Brown Very Loose GRAVEL AND Fine-Coarse SAND, 1 at a depth of 14'. Some Silt, Trace Clay, Wet Brown-Gray Firm SILT, Some Gravel, Some Fine-Coarse 5 9 14 20 23 8.0 Sand, Little Rock fragments, Wet 22 40 50/0.5 REF 1.3 Very Compact, Dry REF = Sample spoon refusal Boring terminated at a depth of 25.0 feet. Free standing water was measured at a depth of 19.0' upon completion of drilling and sampling.

N = NO, BLOWS T	O DRIVE 2-INCH SPLIT SPOON 12-INCHES I	WITH A 140 LB. PIN WT. FALLING 30-INC	HES PER BLOW	CLASSIFICATION: Visual by		
DRILLER:	J. Burrowbridge	DRILL RIG TYPE :	CME - 75	T. Kobik		
METHOD OF INVESTIGATION: ASTM D1586 using 3.25" LD. Hollow Stem Augusts						

1 <i>11</i> A	-

START:

9/12/2013

DRILLER: J. Burrowbridge

METHOD OF INVESTIGATION: ASTM D1586 using 3.25" I.D. Hollow Stem Augers

FINISH:

9/12/2013

SHEET	1	OF	2

SUBSURFACE EXPLORATION LOG

BORING NO. BB-3
PROJ. NO. G13-3523
SURF. ELEV. G.S.
G.W. DEPTH 6.6'

T. Kobik

PROJECT: Proposed Apwan Development Silo Ridge Country Club						ent		LOCATION: 4651 Route 22					
								Amenia, New York					
H GMAD	SAMPLE NO.			S ON SA	ı	1	REC.	SOIL OR ROCK CLASSIFICATION	NOTES				
9	1	0/6	6/12	12/18 8	18/24	14	1.0	Brown Firm SILT, Some Fine-Coarse SAND, Some Gravel,	6" Asphalt at ground surface				
\dashv /	\ <u></u>		0	0	0	14	1.0	Dry	C Asprial at ground surface				
1	2	21	10	8	8	18	0.5	Gray Firm Fine-Coarse SAND, Some Gravel, Little Silt, Dry					
. 1,	3	3	5	7	8	12	1.5	Gray Highly Decomposed Rock, sampled as Gray Firm					
, T/								SILT with rock fragments					
$\overline{1}$	4	9	10	15	15	25	1.4						
1	5	4	18	16	15	34	1.9	Compact	Boring was advanced to a				
∘- /	₩						$\vdash\vdash\vdash$		depth of 25 feet on 9/12/13				
\dashv	-	ļ							using hollow stem auger drilling technique. Boring				
\dashv	-	 					$\vdash \vdash \vdash$		was completed on 9/18/13				
	6	8	18	17	17	35	1.2		using rotary wash drilling				
/	١Ť	l		 ''	.,	<u> </u>	'		technique.				
5	T												
\exists													
\perp													
17	7	7	20	23	24	43	1.9	Light Gray					
<u>/</u>				آـــــا									
\dashv	<u> </u>												
\dashv	<u> </u>												
#	8	18	47	50/0.5		REF	1.4	White-Gray, Very Compact, with Fine Sand Seams, Moist	REF = Sample spoon refusal				
5									Free standing water was				
\dashv				\vdash			$\vdash \vdash \vdash$		measured at a depth of 6.6'				
\dashv	 								with augers at a depth of				
17	9	33	75	59	50	144	1.5		25.0 feet on 9/12/13.				
<u>'</u>													
\bot									ļ				
4													
4/	10	42	49	50/0.3		REF	1.0						
5 /	—						\vdash						
\dashv													
\dashv													
+	11	50/0.1				REF	0.1	Contains Seam of Coarse SAND, Wet					
\dashv /	⊢"	3070,1					┝╩╫	Communic Country of Country of Country 1100					

DRILL RIG TYPE: CME - 75

			•								
DA	TE								Trans Tech	BORING NO.	BB-3
	ARI				/2013		_		TANS TELL	PROJ. NO.	G13-3523
FIN	IISH	1:		9/18	/2013		-		DRILLING SERVICES	SURF. ELEV	G.S.
SHI	ET	2	OF	2					SUBSURFACE EXPLORATION LOG	G.W. DEPTH	6.6'
PR	OJE	CT:	Propo	sed Ap	wan De	velopm	ent	ı	LOCATION: 4651 Route 22		
					ountry C				Amenia, New York		
рти	8	۳.		BLOW	S ON SA	MPLER		REC.	SOIL OR ROCK		
EPTH (ft.)	AMPL	SAMPLE NO.	0/6	6/12	12/18	T	N	(ft.)	CLASSIFICATION	N	OTES
	\s	<u> </u>	1 0/0	0/12	12) 10	10/24	1,		Highly Decomposed Rock, sampled as White-Gray Very		
_									Compact SILT with rock fragments		
_										REF = Sample sp	
	١.,					ļ				NR = No recover	у
45-	Κ	12	50/0			ļ	REF	NR	Boring terminated with auger refusal at 44.0 feet.		
_	$\left\{ \right.$						 				
_	1										
50-]										
_								<u> </u>			
_											
_											
_	1										
-55-	1										
_											
_											
60—					<u> </u>						
_					_						
_											
_	1										
-65											
					ļ						
_											
_											
_											
70											
-											
_											
_											
75											
					ļ						

I = NO. BLOWS T	O DRIVE 2-INCH SPLIT SPOON 12-INCHES WI	TH A 140 LB. PIN WT. FALLING 30-INC	HES PER BLOW	CLASSIFICATION: Visual by
ORILLER:	J. Burrowbridge	DRILL RIG TYPE :	CME - 75	T. Kobik
METHOD OF INVE	STIGATION: ASTM D1586 using 3.25" I.D.	. Hollow Stem Augers and Rotary	Wash Drilling	

Trans Tech
TIMIL IN IVOIL
DRILLING 🚠 SERVICES

DATE

START:

FINISH:

9/10/2013

9/10/2013

BORING NO. BB-4
PROJ. NO. G13-3523
SURF. ELEV. G.S.

CLASSIFICATION: Visual by

T. Kobik

SI	HEE.	r <u>1</u>	OF	1	_				SUBSURFACE EXPLORATION LOG G.W. DEPTH 17.2'					
PI	ROJ	IECT: Proposed Apwan Development							oposed Apwan Development LOCATION: 4651 Route 22					
				Ridge Country Club Amenia, New York										
DEPT (ft.)	H H	SAMPLE NO.		BLOW	1	MPLER	ı	REC.	SOIL OR ROCK CLASSIFICATION	NOTES				
	- 8	1	0/6 6	6/12	12/18 9	18/24 6	N 20	1.5	Brown Firm Fine-Coarse SAND AND SILT, Trace rock	3" Topsoil at ground s	urface			
	$ egthinspace{1}{2}$		Ľ		Ů	Ľ	0	1.0	fragments, Moist	Toposii at ground s				
	\dashv	2	5	5	6	6	11	0.7						
	₫,	3	3	4	5	6	9	1.5	Loose		_			
	7	<u> </u>			45						_			
	-1/	4	6	7	10	7	17	0.8	Brown Very Stiff CLAY AND GRAVEL, Little Fine-Coarse Sand, Moist		_			
	1/	5	2	5	10	16	15	2.0			_			
10	+										_			
	1													
-				40	20	00		0.0	0 V 0 0 V 0 0 V 0 0 0 V 0 0 0 V 0 0 0 0					
-	\forall	6	7	19	39	28	58	2.0	Gray Very Compact GRAVEL AND SILT, Some Fine- Coarse Sand, Dry					
- 15											_			
-	\dashv	-												
-	17	7	15	34	33	40	67	1.5	Gray Very Compact SILT AND GRAVEL, Some Fine-	≥ n	_			
20-	4								Coarse Sand, Dry					
-	1										_			
-	1								V		_			
-	\forall	8	7	19	26	25	45	1.5	Brown-Gray Compact Fine-Coarse SAND AND GRAVEL, Some Clay, Wet					
25-									Boring terminated at a depth of 25.0 feet.	Free standing water wa	as			
-	+									measured at a depth o upon completion of dril	f 23.1'			
-										and sampling.				
-30-	_										_			
-	1	<u> </u>								Bore hole was left oper overnight and free star	n 			
_										water was measured a	ta			
-	-									depth of 17.2' after 24	as			
35-	-							一		***				
-														
-	-													
	1_													
-10-														

All recovered samples will be retained for approximately sixty (60) days, at which time the samples will be desposed of unless directed otherwise.

DRILL RIG TYPE: CME - 75

N = NO. BLOWS TO DRIVE 2-INCH SPLIT SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW

J. Burrowbridge

METHOD OF INVESTIGATION: ASTM D1586 using 3.25" I.D. Hollow Stem Augers

DATE START:	9/10/2013	Trans Tecl
FINISH:	9/10/2013	DRILLING SERVICES

BORING NO. BB-5 PROJ. NO. G13-3523

SURF, ELEV.	G.S.
G.W. DEPTH	14 7'

T. Kobik

SHE	EΤ	1	- OF	1					SUBSURFACE EXPLORATION LOG	G.W. DEPTH 14.7
PRO)JE	CT:	Propos	sed Apv	van De	_ 1				
				dge Co					Amenia, New York	
DEPTH (ft.)	SAMPLES	SAMPLE NG.		BLOWS	ON SA	MPLER	****	REC.	SOIL OR ROCK CLASSIFICATION	NOTES
	¥s,		0/6	6/12	12/18	18/24	N	ļ	POSSIBLE FILL: Brown Medium CLAY AND Fine-Coarse	3" Topsoil at ground surface
	/	1	3	2	3	3	5	1.5	Sand, Little Gravel, Moist	o Topson at ground surface
_	7	2	12	15	11	12	26	0.8	POSSIBLE FILL: Brown Firm SILT AND Fine-Coarse SAND,	·
_	V_{\perp}								Little Gravel, Dry	
- 5 -	7	3	5	8	8	9	16	1.9	Grades to "Little" Fine-Coarse Sand	
_	K,									
_	/	4	5	9	8	7	17	0.7	POSSIBLE FILL: Brown Very Stiff CLAY, Some Fine-	-
-	Н	5	6	9	9	7	18	0.4	Coarse Sand, Little Gravel, Moist Brown Firm SILT AND Fine SAND, Little Gravel, Trace	
\neg		5	"	9	9		10	0.4	Organics, Moist	-
- 10-	,									
-										-
										_
_	/	6	6	16	30	20	46	1.8	Compact, Grades to "Some" Fine Sand, "Trace" Gravel,	-
 15	\angle								Dry	-
-							····	\vdash		-
										-
\exists	7	7	10	16	16	100/0.3	32	1.5	Highly Decomposed Rock, sampled as Dark Gray Fine-	
20	/								Medium SAND, Some Silt, Some rock fragments, Wet	<u> </u>
-20-										
								Ш	Boring terminated with auger refusal at a depth of 21.0 feet.	Free standing water was
								\square		measured at a depth of 20.0'
\dashv										upon completion of drilling and sampling.
-25-								\vdash		-
\dashv								 		Bore hole was left open
-										overnight and free standing
										water was measured at a
-30								igsqcup		depth of 14.7' after 24 hours.
						ļ		\sqcup		-
4						ļ		$\vdash \vdash \vdash$		
-								$\vdash \vdash \vdash$		-
\dashv			-				******	$\vdash \vdash \vdash$		-
-35-								$\vdash \vdash \vdash$		
٦										
										-
\Box								igsquare		_
_40			L							
N = N	10	RI OW	S TO DE	IVE 2-IN	ICH SPI	IT SPOO	N 12-1N	ICHES I	WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW	CLASSIFICATION: Visual by

DRILL RIG TYPE : CME - 75

All recovered samples will be retained for approximately sixty (60) days, at which time the samples will be desposed of unless directed otherwise.

J. Burrowbridge

METHOD OF INVESTIGATION: ASTM D1586 using 3.25" I.D. Hollow Stem Augers

DATE		
START:	9/9/2013	
FINISH:	9/9/2013	

METHOD OF INVESTIGATION: ASTM D1586 using 3.25" I.D. Hollow Stem Augers

 BORING NO.
 BB-6

 PROJ. NO.
 G13-3523

 SURF. ELEV.
 G.S.

.W. DEPTH See Notes

	OF						SUBSURFACE EXPLORATION LOG	G.W. DEPTH See Notes	
PROJECT:	Propo	osed Apwan Development LOCATION: 4651 Route 22 Ridge Country Club Amenia, New York							
		idge Co							
SAMPLES SAMPLE SAMPLE		BLOWS	ON SA	MPLER		REC.	SOIL OR ROCK CLASSIFICATION	NOTES	
	_	6/12	12/18	18/24	N	(ft.)			
- / -1	3	8	11	12	19	0.9	POSSIBLE FILL: Brown Firm Fine-Coarse SAND AND SILT,	2" Topsoil at ground surface	
+	12	40		44	21	1 =	Some Gravel, Dry		
	12	10	11	11	۷١	1.5	Brown-Gray		
1/3	4	10	12	12	22	0.8			
╢╫	 					5.5			
1/14	10	7	5	4	12	0.4	Grades to "Little" Gravel	The second secon	
₩			-					i	
5	WH	WH	1	1	1	0.3	Brown Very Stiff CLAY, Some Fine-Coarse Sand, Trace	WH = Weight of hammer and	
\mathcal{I}	<u> </u>						Gravel, Trace Organics, Moist	drilling rods.	
 - - - - - - - - -									
1/1-6	2	3	4	4	7	0.5	Brown Loose Fine-Coarse SAND, Some Gravel, Little Silt,		
/ 	_						Dry	Print	
	-					\square			
	 					-			
7	49	49	43	32	92	0.4	Very Compact		
╢┼	49	40	40	32	⇒z.	0.4	very compact		
1 	-\								
1	1					-			
/ 8	4	14	16	17	30	0.4	Dark Gray, Very Compact Grades to "AND" CLAY, "Little"		
/							Gravel, Moist		
↓							Boring terminated at a depth of 25.0 feet.	Free standing water was	
┨								not encountered upon	
								completion of drilling and	
┨ ┣━━			-					sampling.	
┨┞─								Poro holo was left enon	
+						-		Bore hole was left open overnight and caved in at a	
┨╟						-		depth of 16.7' after 24 hours.	
┪┝━	1							deput of to./ and 24 hours.	
┥ ├	 								
┨ ├──	 				-				
1	†					-			
1						\neg			
1					$\neg \neg$	\neg			
]									

ATE TART:	9/12/2013	Trans Tech
INISH:	9/12/2013	DRILLING A SERVICES

BB-7 BORING NO. PROJ. NO. G13-3523 SURF. ELEV. _ G.S.

1	DEPTH	See Notes

SHEET 1 OF 1			SUBSURFACE EXPLORATION LOG	G.W. DEPTH See Notes								
PROJECT: Proposed Apwan Development				velopm	ent	LOCATION: 4651 Route 22						
		Silo Ridge Country Club								Amenia, New York		
DEI	РТН	LES	SAMPLE NO.	BLOWS ON SAMPLER				REC.	SOIL OR ROCK	NOTES		
(1	t.)	SAM	SA.	0/6	6/12	12/18	18/24	N	(ft.)	CLASSIFICATION		
	4	Λ	1	2	2	2	2	4	0.5	Brown Medium CLAY AND Fine-Coarse SAND, Little	4" Topsoil at ground surface	
	-	4					-		10	Gravel, Dry Stiff	-	
		/}	2	3	4	5	5	9	1.0	Sui	_	
1.	. 🕇	1	3	2	5	5	6	10	1.3			
T '	°Z	4									_	
	4	/	4	11	7	6	5	13	0.5			
	-	+	5	2	6	8	13	14	1.8	Grades to "AND" GRAVEL, "Little" Fine-Coarse Sand	_	
	\dashv	/}	3		0	0	10	14	1.0	Glades to AND GIVAVEE, Exile Thre-Godiso Gaild		
1	°T											
	\Box										_	
	+	↲			00	0.5	07	40	4.0	kland.	_	
	,	/ŀ	6	9	22	25	37	46	1.8	Hard	_	
 	5	十										
											_	
	\perp	\downarrow									<u></u>	
	\dashv	/ŀ	7	9	17	20	23	37	1.2	Gray Compact SILT AND GRAVEL, Little Fine-Coarse Sand, Dry	_	
-2	⁰┪	+								Garia, Diy	_	
		t									_	
	1	_[- -	
	\dashv	/ŀ	8	43	33	60	63	93	1.0	Highly Decomposed Rock, sampled as Gray Very Compact SILT with rock fragments, Dry	_	
-2	⁵╬	+								Boring terminated at a depth of 25.0 feet.	Free standing water was	
	┪	l									not encountered upon	
	\Box										completion of drilling and	
	\dashv	\perp									sampling.	
— з	$\circ \dashv$	ŀ										
	\dashv	H										
ĺ												
	4	L									_	
— з	5	-									_	
	-	ŀ							$\vdash \vdash \vdash$		_	
	\dashv	t									_	
	\exists										_	
L_4	ــــ	L										

N = NO. BLOWS TO DRIVE 2-INCH SPLIT SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFICATION: Visual by								
DRILLER:	J. Burrowbridge	DRILL RIG TYPE :	CME - 75	T. Kobik				
METHOD OF INVESTIGAT	WY ZHAONO IN THE WAY AND THE W							

DATE	
START:	9/11/2013
FINISH:	9/11/2013

METHOD OF INVESTIGATION: ASTM D1586 using 3.25" I.D. Hollow Stem Augers

BB-8 BORING NO. PROJ. NO. G13-3523 SURF, ELEV. G.S.

SH	EET		OF.	1	-				SUBSURFACE EXPLORATION LOG	G.W. DEPTH 12.8'		
PROJECT: Proposed Apwan Development			ent	J	LOCATION: 4651 Route 22							
			Silo Ridge Country Club						Amenia, New York			
	T 40	ш			ON SAI			I				
DEPTH (ft.)	SAMPLES	SAMPLE NO.		I				REC.	SOIL OR ROCK CLASSIFICATION	NOTES		
	Š		0/6	6/12	12/18	18/24	N					
-	{/	1	6	6	5	6	11	0.5	Brown Firm SILT, Some Fine-Medium SAND, Little Gravel, Dry	_		
-	1	2	6	6	7	6	13	1.1	ыу	_		
-	1/							1.1		_		
L -	17	3	4	6	6	7	12	0.6	Grades to "Some" Gravel			
	V											
_	1/	4	4	2	2	4	4	1.1	Loose, Grades to "Little" Gravel, Moist			
-	γ,	<u> </u>								_		
-	{/	5	10	9	17	17	26	1.9	Firm, Dry			
10-	╀-	 								-		
	1	<u> </u>										
	1									_		
_	17	6	5	12	14	14	26	1.0	Brown Firm GRAVEL, Some Clay, Some Fine-Coarse] _		
15-	<u>V</u>								Sand, Wet	Driller noted "wet" soil layerat a depth of 15 feet.		
										at a depth of 15 feet.		
_										<u> </u>		
-	Ι,							0.0	O I I KANDILE: O CAND			
-	1/	7	5	10	9	12	19	0.8	Grades to "AND" Fine-Coarse SAND	-		
-20-	╀							-				
_	1									REF = Sample spoon refusal		
	1		************									
	∇	8	100/0.4				REF	0.2	Dark Gray Weathered Rock			
25									Boring terminated with auger refusal at a depth of 24.0 feet.	Free standing water was		
	4									measured at a depth of 12.8'		
	-									upon completion of drilling and		
-	┨									sampling.		
-	1									-		
30-	1									_		
-	1									_		
_												
- 35-	4									_		
-										_		
-	-									_		
-	1									<u> </u>		
_	1									_		
40-						1						
N =	NO.	BLOW	S TO DR	IVE 2-IN	ICH SPLI	T SPOO	N 12-IN	CHES V	WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW	ASSIFICATION: Visual by		
DRII	LEF	t:		J. B	urrowbi	ridae			DRILL RIG TYPE: CME - 75	T. Kobik		

DATE START:	9/11/2013	Trans
FINISH:	9/11/2013	DRILLING & SERVICES
UEET 4	OF 4	**

BORING NO. BB-9
PROJ. NO. G13-3523
SURF. ELEV. G.S.

14/	DEDTH	12.81	

OHLL	T 1	OF	1					SUBSURFACE EXPLORATION LOG	G.W. DEPTH 12.8'
PROJ	ECT:	Propos	sed Apv	van Dev	velopm	ent		LOCATION: 4651 Route 22	
				untry C				Amenia, New York	
PTH (ft.)	SAMPLE SAMPLE NO.		1	ON SAI	Γ		REC.	SOIL OR ROCK CLASSIFICATION	NOTES
	3 ° / 1	0/6	6/12	12/18 4	18/24 4	N 7	0.5	Brown Loose Fine-Coarse SAND AND CLAY, Some Gravel,	4" Topsoil at ground surface
\dashv	′⊢∸	+-				•	0.0	Trace Organics, Moist	, roposii at grodina samass
1	/ 2	3	3	3	4	6	0.8	Grades to "AND" SILT, "Trace" Clay	
\exists									and the state of t
5 —	/ <u> </u>	2	3	3	4	6	0.8	Contains rock fragments, Dry	:
	\downarrow								
\dashv	/ 4	5	8	11	7	19	0.5	Firm	
+	/ 5	3	6	19	39	25	1.0	Highly Decomposed Rock, sampled as Gray Firm SILT	
\dashv	′⊢	1	v	13		2.0	1.0	with rock fragments, Dry	
10-							\Box		
4	<u> </u>	6	9	22	25	31	1.2	Compact	
15-									
4	-								
-	-	 							
7	7	100/0.1				REF	0.1	Very Compact	REF = Sample spoon refusal
20-								Boring terminated with auger refusal at a depth of 19.5 feet.	Free standing water was not
1								Doming terminated man deger release at a copy of the c	encountered upon completion
1									of drilling and sampling.
25—									
4							-		
\dashv	\vdash						-		
-	\vdash								
		-							İ
30									
4									
35—									
\dashv									
\dashv									
╡									
4n_									

N = NO. BLOWS TO DRIVE 2-INCH SPLIT SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSI-ICATION: VISUAL BY									
DRILLER;	J. Burrowbridge	DRILL RIG TYPE :	CME - 75	T. Kobik					
METHOD OF INVESTIGATION: ASTM D1586 using 3.25" I.D. Hollow Stem Augers									

All recovered samples will be retained for approximately sixty (60) days, at which time the samples will be desposed of unless directed otherwise.

DATE START:	9/9/2013	Trans
FINISH:	9/10/2013	DRILLING & SERVICES
HEET 1	OF 1	

BORING NO. BB-10
PROJ. NO. G13-3523
SURF. ELEV. G.S.

Proposed Apwan Development Silo Ridge Country Club BLOWS ON SAMPLER 0/6 6/12 12/18 18/24 N 4 8 10 12 1.5 0 4 6 6 7 12 0 4 6 5 7 11 0	CLASSIFICATION 5 POSSIBLE FILL: Brown Firm Fine-Coarse SAND, Some Gravel, Some Silt, Trace Organics, Dry	G.W. DEPTH See Notes NOTES 3" Topsoil at ground surface
Silo Ridge Country Club BLOWS ON SAMPLER 0/6 6/12 12/18 18/24 N 4 8 10 12 1.5 0 4 6 6 7 12 0	Amenia, New York SOIL OR ROCK CLASSIFICATION POSSIBLE FILL: Brown Firm Fine-Coarse SAND, Some Gravel, Some Silt, Trace Organics, Dry	
BLOWS ON SAMPLER RE (f 0/6 6/12 12/18 18/24 N (f 4 8 10 12 1.5 0 4 6 6 7 12 0	SOIL OR ROCK CLASSIFICATION 5 POSSIBLE FILL: Brown Firm Fine-Coarse SAND, Some Gravel, Some Silt, Trace Organics, Dry	
4 8 10 12 1.5 0 4 6 6 7 12 0	CLASSIFICATION 5 POSSIBLE FILL: Brown Firm Fine-Coarse SAND, Some Gravel, Some Silt, Trace Organics, Dry	
4 8 10 12 1.5 0 4 6 6 7 12 0	5 POSSIBLE FILL: Brown Firm Fine-Coarse SAND, Some Gravel, Some Silt, Trace Organics, Dry	
4 6 6 7 12 0	Gravel, Some Silt, Trace Organics, Dry	3" Tongoil at ground surface
		o ropson at glound surface
		Driller noted boulders at a
4 6 5 7 11 0	-	depth of 2'.
	Brown Firm SILT, Little Fine Sand, Trace Organics, Dry	
7 6 3 5 9 0	5 Loose, Grades to "Little" Gravel, "Little" Rock Fragments	
7 12 11 12 23 1.	0 Highly Decomposed Rock, sampled as Gray Firm SILT	
	with rock fragments, Dry	
 	_	
11 18 15 16 33 1.	5	
		Driller noted boulder at a
	_	depth of 17'.
100/0.5 REF 0.	3 Sampled as Dark Gray Fine-Coarse SAND, Wet	REF = Sample spoon refusal
	Boring terminated with auger refusal at a depth of 19.5 feet.	Free standing water was not
		encountered upon completion
		of drilling and sampling.
	-	
	7	
	_	
	-	
 	_	
	-	
]	

		.,,,,,,							
DRILLER:	J. Burrowbridge	DRILL RIG TYPE :	CME - 75	T. Kobik					
METHOD OF INV	METHOD OF INVESTIGATION: ASTM D1586 using 3.25" I.D. Hollow Stem Augers								

All recovered samples will be retained for approximately sixty (60) days, at which time the samples will be desposed of unless directed otherwise.

DATE START: 9/11/2013 FINISH: 9/11/2013	Trans Tech
START: 9/11/2013	Trans I room

 BORING NO.
 BB-11

 PROJ. NO.
 G13-3523

 SURF. ELEV.
 G.S.

Liv	li OF	1.		9/11	12013		-		DRILLING 🚡 SERVICES	SORF, ELEV. G.S.
SHE	EET	1	OF	1	-				SUBSURFACE EXPLORATION LOG	G.W. DEPTH See Notes
PR	OJE	CT:	Proposed Apwan Development						LOCATION: 4651 Route 22	
					untry C				Amenia, New York	
	192	ш		DI OW	2 ON 24	MPLER		1		
DEPTH (ft.)	SAMPLE	SAMPLE NO.	0/6	6/12	12/18	18/24	N	REC. (ft.)	SOIL OR ROCK CLASSIFICATION	NOTES
	17	1	4	6	7	9	13	1.0	Brown Firm Fine-Coarse SAND, Some Gravel, Some Silt,	1" Topsoil
l –	K,								Dry	_
_	1/	2	9	13	14	14	27	0.6		_
	\vdash	3	6	12	9	8	21	1.0	Grades to "AND" GRAVEL	_
_ 5 _	1/	3	0	12	3	0	41	1.0	Olades to AND OTHER	_
-	1	4	17	16	26	28	42	0.6	Gray, Compact, Grades to "Little" Silt, "Little" rock	
_	1	•					,	1	fragments	
	17	5	12	28	39	41	67	1.2	Highly Decomposed Rock, sampled as Dark Gray Very]
10-	\mathbb{Z}								Compact Rock Fragments	_
_										_
] –	-			45			404	1, 5	Consoled as Drawin Craw Van Comment Cll Twith Dook	_
-	/	6	59	45	56	100/0.4	101	1.5	Sampled as Brown-Gray Very Compact SILT with Rock Fragments	
15—						-			Toghis its	_
_										
_	\mathbb{Z}	7	100/0.3				REF	0.2	Dark Gray	REF = Sample spoon refusal
20										
_								\vdash	Boring terminated with auger refusal at a depth of 20.0 feet.	Free standing water was not
_								\vdash		encountered upon completion of drilling and sampling.
_								\Box		
										_
25										_
										_
_						<u> </u>		$\vdash \vdash$		
30										_
_								 		_
										_
_										
35_										
00 _										_
_										_
								 		_
										_
— 40 —						L				
NI - N	10.	71 (O) A/	0.70.00	D. (T. O. 18)	KOLL CDI	IT COOO	NI 40 IN	IOUEO 1	NITH A 140 LB PIN WT FALLING 30-INCHES PER BLOW	CLASSIFICATION: Visual by

DRILLER:	J. Burrowbridge	DRILL RIG TYPE :	CME - 75	T. Kobik				
METHOD OF INVESTIGATION: ASTM D1586 using 3.25" I.D. Hollow Stem Augers								
All recovered samples will be retained for approximately sixty (60) days, at which time the samples will be desposed of unless directed otherwise.								

DATE START: FINISH:	9/17/2013 9/17/2013	Trans Tech
SHEET 1	OF 1	SUBSURFACE EXPLORATION LOG

BORING NO. BB-12
PROJ. NO. G13-3523
SURF. ELEV. G.S.

l		_							₩₩	OW DEDTH Download
Sł	HEET	1	OF -		-				SUBSURFACE EXPLORATION LOG	G.W. DEPTH See Notes
PI	ROJE	ECT:	Propo	sed Apv	wan De	velopm	ent	•	LOCATION: 4651 Route 22	
Silo Ridge Country Club									Amenia, New York	
DED	<u>1</u>	ш.		BLOWS	S ON SA	MPLER	•	REC.	SOIL OR ROCK	
DEPT (ft.)	SAMPL	SAMPLE NO.	0/6	6/12	12/18	18/24	N	(ft.)	CLASSIFICATION	NOTES
	17	1	5	12	15	20	27	0.3	Brown Firm Fine-Coarse SAND, Some Gravel, Some Silt,	1" Topsoil
	+	_	- 00		00			4.0	Dry Gray Very Compact GRAVEL AND Fine-Coarse Sand,	
	$\dashv /$	2	28	33	36	41	69	1.0	Little City Calables Day	_
-	17	3	41	45	49	16	94	1.0	Highly Decomposed Rock, sampled as Light Gray Very	
– 5	7								Compact Rock Fragments with Little Silt, Dry	
]/	4	23	88	72	45	160	0.8		REF = Sample spoon refusal
١.	$\bot\!$	<u> </u>					<u> </u>			
	-1/	5	7	36	44	50/0.1	REF	0.6		REF = Sample spoon refusal
— 10-	+									_
	-		 -	ļ					Boring terminated with auger refusal at a depth of 11.0 feet.	Free standing water was not
'	1								bonnig tommicator man dagor rollabat at a doptive. The total	encountered upon completion
	1									of drilling and sampling.
_ 15										<u> </u>
	_									Free standing water was not encountered upon completion of drilling and sampling.
	4				ļ					_
	4	<u> </u>								_
	\dashv	<u> </u>								_
20	-									_
٠	_		 							
										_
										_
- 25-	4									
-	-									****
-	\dashv							-		_
	\dashv	_	ļ							_
-	1									
30-										
_										a.m.
	_									
-	4									_
35-	\dashv	\vdash								_
-	-									_
-	┨									_
-										
L 40.										
				-						

N = NO. BLOWS TO	DRIVE 2-INCH SPLIT SPOON 12-INCHE	CLASSIFICATION: Visual by				
DRILLER:	J. Burrowbridge	DRILL RIG TYPE :	CME - 75	T. Kobik		
METHOD OF INVESTIGATION: ASTM D1586 using 3.25" I.D. Hollow Stem Augers						

All recovered samples will be retained for approximately sixty (60) days, at which time the samples will be desposed of unless directed otherwise.

TEST PIT LOG

DATE:

9/13/13

PROJECT:

Apwan Development

TEST PIT NO.:

DT-1

GROUND ELEV.:

NA

PROJECT NO.:

G13-3523

INSPECTOR:

Tod Kobik, P.E.

WEATHER:

Sunny, Warm

EXCAVATION

EQUIPMENT:

DEPTH (Feet)	SOIL DESCRIPTION	NOTES
0 - 0.5'	Topsoil	
0.5' - 3.0'	Brown Fine-Coarse GRAVEL AND SAND, Some Clayey Silt, Moist	No groundwater was observed.
3.0' - 11.0'	Gray Fine-Coarse GRAVEL AND SAND, Trace Silt, Moist	observed.
w.		

TEST PIT LOG

DATE:

9/13/13

PROJECT:

Apwan Development

TEST PIT NO.:

DT-2

GROUND ELEV.:

NA

PROJECT NO.:

G13-3523

INSPECTOR:

Tod Kobik, P.E.

WEATHER:

Sunny, Warm

EXCAVATION

EQUIPMENT:

DEPTH (Feet)	SOIL DESCRIPTION	NOTES
0 - 1.0'	Dark Brown Fine-Coarse SAND AND Clayey SILT with organics, Moist	
1.0' - 1.7'	Brown Fine-Coarse SAND AND Clayey Silt, Little Gravel, Moist	Groundwater was present at a depth
1.7' - 8.0'	Gray Fine-Coarse GRAVEL AND SAND, Cobbles, Trace Silt, Moist	of 7.5 feet.

TEST PIT LOG

DATE:

9/13/13

PROJECT:

Apwan Development

TEST PIT NO.:

DT-3

GROUND ELEV.:

NA

PROJECT NO.:

G13-3523

INSPECTOR:

Tod Kobik, P.E.

WEATHER:

Sunny, Warm

EXCAVATION

EQUIPMENT:

DEPTH (Feet)	SOIL DESCRIPTION	NOTES
0 - 1.3'	Dark Brown Fine-Coarse SAND AND Clayey SILT with organics, Moist	
1.3' - 2.3'	Brown Fine-Coarse SAND AND Clayey Silt, Little Gravel, Moist	Groundwater was present at a depth of 6.5 feet.
2.3' - 5.3'	Gray Fine-Coarse GRAVEL AND SAND, Cobbles, Trace Silt, Moist	or o.s reet.
5.5' - 7.5'	Gray Silty CLAY, Wet	

TEST PIT LOG

9/13/13

PROJECT:

Apwan Development

TEST PIT NO.:

DT-4

GROUND ELEV.:

NA

PROJECT NO.:

G13-3523

INSPECTOR:

Tod Kobik, P.E.

WEATHER:

Sunny, Warm

EXCAVATION

EQUIPMENT:

DEPTH (Feet)	SOIL DESCRIPTION	NOTES
0 - 0.7'	Topsoil	
0.7' - 9.5'	Gray Fine-Coarse GRAVEL AND SAND, Trace-Little Silt, Moist	No groundwater was observed.

TEST PIT LOG

_	-	_	-	
п	Λ	т		
•	п		_	

9/13/13

PROJECT:

Apwan Development

TEST PIT NO.:

DT-5

GROUND ELEV.:

NA

PROJECT NO.:

G13-3523

INSPECTOR:

Tod Kobik, P.E.

WEATHER:

Sunny, Warm

EXCAVATION

EQUIPMENT:

DEPTH (Feet)	SOIL DESCRIPTION	NOTES
0 - 0.6'	Topsoil	
0.6' - 11.3'	Gray Fine-Coarse GRAVEL AND SAND, Some Cobbles, Trace Silt, Moist	No groundwater was observed.

TEST PIT LOG

_		_	_	
n	Λ	т	_	٠
\boldsymbol{L}	m		_	٠

9/13/13

PROJECT:

Apwan Development

TEST PIT NO.:

DT-6

GROUND ELEV.:

NA

PROJECT NO .:

G13-3523

INSPECTOR:

Tod Kobik, P.E.

WEATHER:

Sunny, Warm

EXCAVATION EQUIPMENT:

DEPTH (Feet)	SOIL DESCRIPTION	NOTES
0 - 0.5' 0.5' - 9.7'	Topsoil Gray Fine-Coarse GRAVEL AND SAND, Some Cobbles, Trace Silt, Moist.	No groundwater was observed. A vein of Fine-Coarse SAND was present to a depth of 4.5' in west side of test pit.

EXAMPLE KEY TO SUBSURFACE EXPLORATION LOGS

	(X/XX/XX (X/XX/XX OF <u>X</u>	-	Trans Tech	PROJ. NO. XX-XXXX HOLE NO. X-X SURF. ELEV. XXX.X' G.W. DEPTH X.X'
PROJECT:	PROJECT PROJECT		LOCATION: PROJECT LOCATION PROJECT LOCATIO	
SAMPLES SAMPLES	BLOWS ON SAMPLER	Z Z RECOVERY (ft)	SOIL OR ROCK CLASSIFICATION	NOTES
2 507.5	3 4 8	7 1.0	3" TOPSOIL Brown SILT, some Sand, trace clay, ML (Moist-Loose) Gray SHALE, medium hard, weathered, thin bedded, some fractures	Groundwater at 10' upon completion, and 5' 24 hrs. after completion Run#1, 3.5'-6.0'
	1	 	6 (numbered features explained on reverse)	9 55% Recovery 50% RQD

TABLE I

Split Spoon Sample

TABLE II

Identification of soil type is made on basis of an estimate of particle sizes, and in the case of fine grained soils also on basis of plasticity.

	Soil Type	Soil Particle Size	
I	Boulder	>12"	
1	Cobble	3" - 12"	
١	Gravel - Coarse	3" - 3/4"	Coarse Grained
١	- Fine	3/4" - #4	(Granular)
١	Sand - Coarse	#4 - #10	
١	- Medium	#10 - #40	
	- Fine	#40 - #200	
	Silt - Non Plastic (Co	Fine Grained	

TABLE III

The following terms are used in classifying soils consisting of mixtures of two or more soil types. The estimate is based on weight of total sample.

Term	Percent of Total Sample
"and"	35 - 50
"some"	20 - 35
"little"	10 - 20
"trace"	less than 10

(When sampling gravelly soils with a standard split spoon, the true percentage of gravel is often not recovered due to the relatively small sampler diameter.)

TABLE IV

The relative compactness or consistency is described in accordance with the following terms:

	lonowing terms.					
	Granular Soi	ls	Cohesive Soils			
_	Term	Blows per Foot, N	Term	Blows per Foot, N		
	Very Loose	0 - 4	Very Soft	0 - 2		
	Loose	4 - 10	Soft	2 - 4 4 - 8		
	Firm	10 - 30	Medium Stiff	4 - o 8 - 15		
	Compact	30 - 50	Very Stiff	15 - 30		
	Very Compact	>50	Hard	>30		

(Large particles in the soils will often significantly influence the blows per foot recorded during the penetration test)

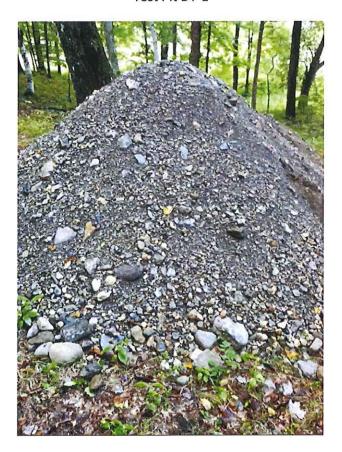
TABLE V

Varved	Horizontal uniform layers or seams of soil(s).
Layer	Soil deposit more than 6" thick,
Seam	Soil deposit less than 6" thick.
Parting	Soil deposit less than 1/8" thick.
Laminated	Irregular, horizontal and angled seams and partings of soil(s).

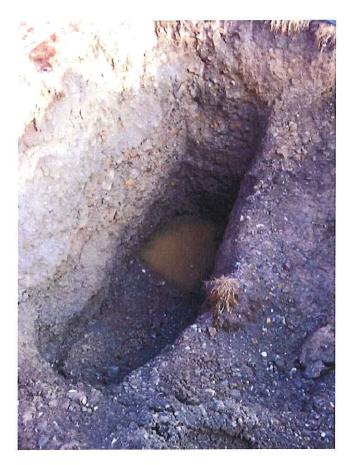
TABLE VI

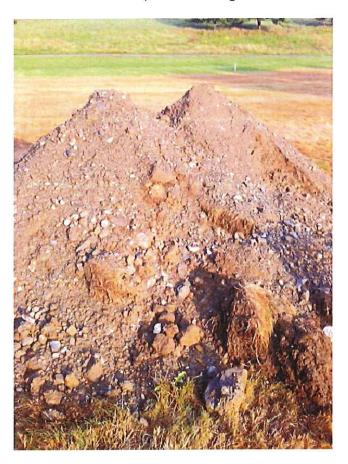
Rock Class	sification Term	Meaning	Rock Clas	ssification Term	Meaning	
Hardness	- Soft - Medium Hard - Hard - Very Hard	Scratched by fingernail Scratched easily by penknife Scratched with difficulty by penknife Cannot be scratched by penknife	Bedding	 Laminated Thin Bedded Bedded Thick Bedded 	(<1") (1" - 4") (4" - 12") (12" - 36")	Natural breaks in Rock Layers
Weathering	Very WeatheredWeatheredSound	Judged from the relative amounts of disintegration, iron staining, core recovery, clay seams, etc.		- Massive refers to natural brea rock layers)	(>36") aks in the rock orio	oriented at some

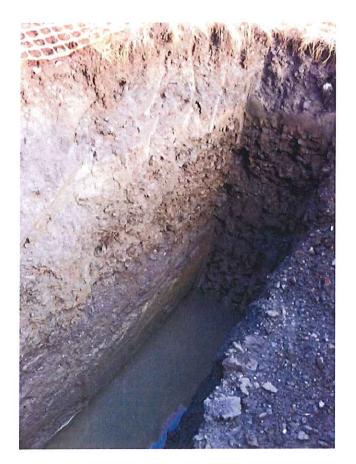
GENERAL INFORMATION & KEY TO SUBSURFACE LOGS

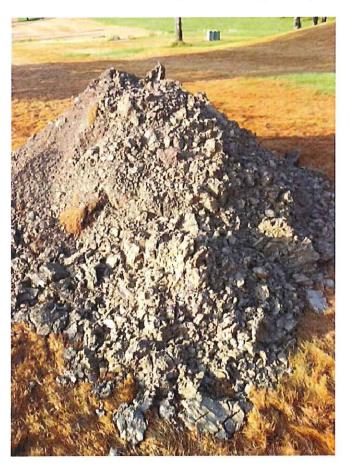

The Subsurface Logs attached to this report present the general observations and mechanical data collected by the driller at the site, supplemented by classificiation of the material removed from the borings as determined through visual identification by technicians in the laboratory. It is cautioned that the materials removed from the borings represent only a small fraction of the soils at the site and may not be representative of subusurface conditions between and/or away from the boring locations or between the sampled intervals. The data presented on the Subsurface Logs along with the recovered samples provide a basis for estimating the engineering characteristics of the soils at the site. The evaluation must consider all the recorded details and their relative significance to the project. It is common that evaluation of standard subsurface data indicates the need for additional testing and/or sampling to more accurately evaluate the subsurface conditions. Any evaluation of the data presented on the Subsurface Logs must be performed by qualified professionals. The following information defines some of the procedures and terms used on the Subsurface Logs to describe the conditions encountered. The paragraph numbers below correspond to the numbered features identified on the opposite page.

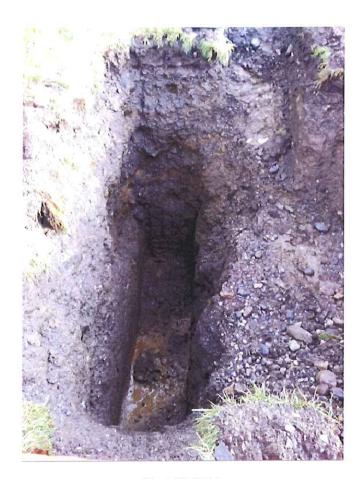
- 1. The figures in the Depth column define the scale of the Subsurface Log.
- The Samples column shows a graphical representation of the depth and type of sampling performed. See Table I for descriptions of the symbols used to represent the various types of samples.
- 3. The Sample No. is used for identification on sample containers and laboratory test reports.
- 4. Blows on Sampler shows the results of the "Standard Penetration Test" (SPT), recording the number of blows required to drive a split spoon sampler into the soil. The number of blows required to drive the sampler for each six inch increment is recorded. The first six inches of penetration is considered a seating drive. The sum of the number of blows required for the second and third six inch increments is termed the penetration resistance, N. The outside diameter of the sampler, hammer weight and length of drop are noted at the bottom of the Subsurface Log.
- 5. Recovery Shows the length of the recovered sample.
- 6. All recovered soil samples are reviewed in the laboratory by an engineering technician or geotechnical engineer, unless noted otherwise. Visual descriptions are made on the basis of a combination of the driller's field descriptions and noted observations together with the sample as received in the laboratory. The method of visual classification is based primarily on the Unified Soil Classification System (ASTM D 2487) with regard to the particle size and plasticity (See Table No. II), and the Unified Soil Classification group symbols for the soil types are sometimes included with the soil classification. Additionally, the relative portion, by weight, of two or more granular soil types is described in accordance with "Suggested Methods of Test for Identification of Soils" by D.M. Burmister, ASTM Special Technical Publication 479, June 1970, (See Table No. III). Description of the relative soil density or consistency is based upon the penetration records as defined in Table No. IV. The description of the soil moisture is based upon the relative wetness of the soil as recovered and is decribed as dry, moist, wet or saturated. Water introduced into the boring either naturally or during drilling may have affected the moisture condition of the recovered samples. Special terms are used as required to describe soil deposition in greater detail; several such terms are listed in Table V. When sampling gravelly soils with a standard two inch diameter split spoon sampler, the true percentage of gravel is often not recovered due to the relatively small samper diameter. The presence of boulders and large gravel is sometimes, but not necessarily, detected by an evaluation of the sampler blows or through the action of the drill rig as reported by the driller.
- 7. Rock descriptions are based on review of the recovered rock core samples and the driller's notes. Typical rock classification terms are included in Table VI.
- 8. The stratification lines represent the approximate boundary between soil types and the transition may be gradual. Solid stratification lines delineate apparent changes in soil type, based upon review of recovered soil samples and the driller's notes. Dashed lines indicate a lesser degree of certainty with respect to either a change in soil type or where such a change may occur.
- 9. Miscellaneous observations and procedures noted by the driller are shown in this column, including water level observations. It is important to understand that the reliability of the water observations depends upon the soil type (water level does not readily stabilize in a bore hole through fine grained soils), and that any drill water used to advance the boring may have influenced the observations. Typically, the ground water level will fluctuate with seasonal changes in precipitation patterns. One or more perched or trapped water levels may exist in the ground seasonally. Generally, it is prudent to install a groundwater observation well to better define water levels.
- 10. The length of core run is defined as the length of penetration of the core barrel. Core recovery is the length of core recovered divided by the core run length. The Rock Quality Designation (RQD) is the total length of pieces of recovered core exceeding 4 inches divided by the core run length. The size of the core barrel used is also noted.


APPENDIX B TEST PIT PHOTOS


Test Pit DT-1


Test Pit DT-1 Spoil Pile


Test Pit DT-2, Note Standing Water


Test Pit DT-2 Spoil Pile

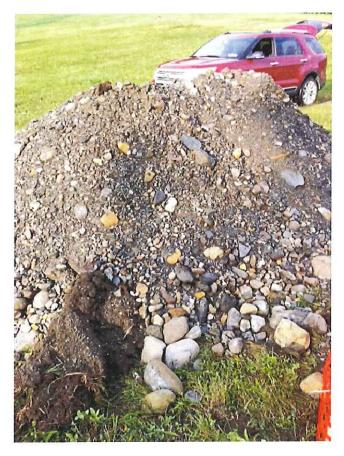
Test Pit DT-3, Note Standing Water & Clay Soil Layer

Test Pit DT-3 Spoil Pile

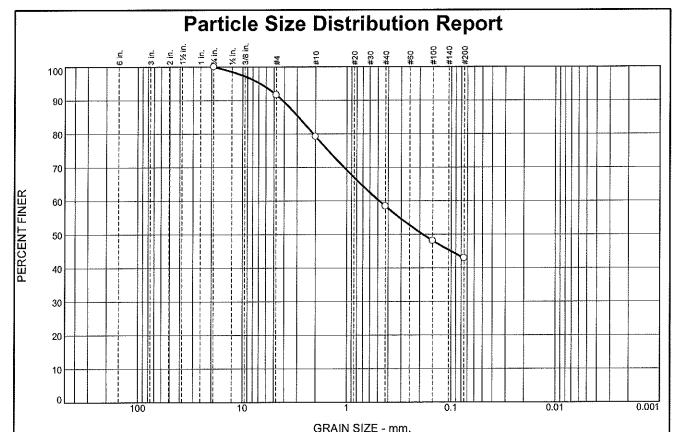
Test Pit DT-4

Test Pit DT-4 Spoil Pile

Test Pit DT-5


Test Pit DT-5 Spoil Pile

Test Pit DT-6



Test Pit DT-6, Note Vein of Fine-Coarse Sand in Side of Excavation

Test Pit DT-6 Spoil Pile

APPENDIX C LABORATORY TEST RESULTS

OTO THE COURT OF LEGISLATION OF LEGI									
07 - 01		% Gravel			% Sand		% Fines		
% +3"		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0		0.0	8.4	12.4	20.8	15.5	42.9		
SIEVE	PERCENT	SPEC.*	PAS	S?		Soil D	escription		
				ا ایس					

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
#4	91.6		
#10	79.2		
#40	58.4		
#100	48.1		
#200	42.9		

	Soil Description					
PL=	Atterberg Limits LL=	P I =				
D ₉₀ = 4.1604 D ₅₀ = 0.1870 D ₁₀ =	Coefficients D85= 2.9160 D30= Cu=	D ₆₀ = 0.4878 D ₁₅ = C _c =				
USCS=	Classification AASHT	O=				
Remarks Water Content: 16.8 %						

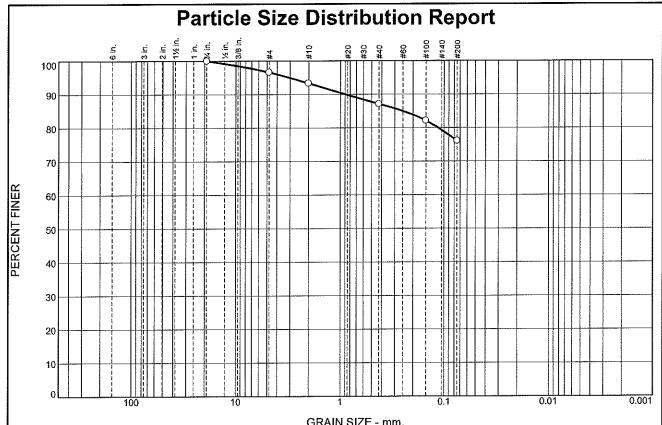
Location: B-1, S-1, 2 - 4' Sample Number: S-2

Depth: 2-4'

Date: 10/11/13

QCQA Laboratories, Inc.

Client: VHB


Project: APWAN Development - Silo Ridge

Schenectady, NY

Project No: G13-3523

Figure

B1/S2

	OTAMA OTEL TIME							
AL AB	% Gı	ravel	% Sand			% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	3.4	3.3	6.2	11.0	76.1	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
#4	96.6		
#10	93.3		
#40	87.1		
#100	82.1		
#200	76.1		

	Soil Description				
PL=	Atterberg Limits	Pl=			
D ₉₀ = 0.8906 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.2508 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =			
USCS=	Classification AASHT	O=			
Remarks Water Content: 18.4 %					

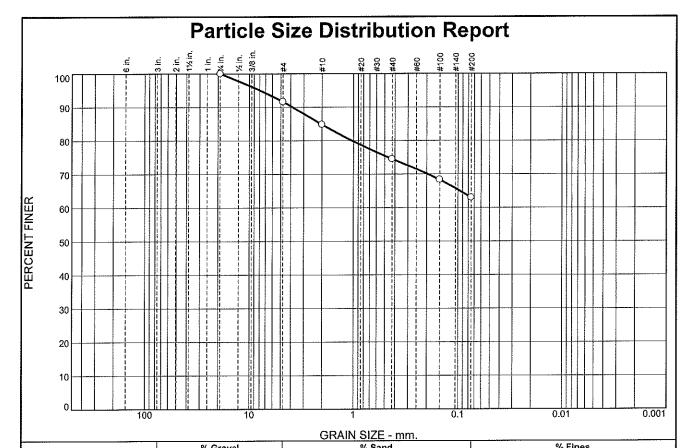
Location: B-1, S-3, 4 - 6' Sample Number: S-3

Depth: 4-6'

Date: 10/11/13

QCQA Laboratories, Inc.

Client: VHB


Project: APWAN Development - Silo Ridge

Schenectady, NY

Project No: G13-3523

Figure

B1/S3

% +3"			% Gravel			% Sand		% rines	
			Coarse	Fine	Coarse	Medlum	Fine	Silt	Clay
	0.0		0.0	8.4	6.8	10.3	11.5	63.0	
	SIEVE	PERCENT	SPEC.*	PAS	S?		Soil D	escription	
	SIZE	FINER	PERCEN	T (X=1	VO)				

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
#4	91.6		
#10	84.8		
#40	74.5		
#100	68.3		
#200	63.0		

	Soil Description				
PL=	Atterberg Limits	P =			
D ₉₀ = 3.8447 D ₅₀ = D ₁₀ =	Coefficients D85= 2.0520 D30= Cu=	D ₆₀ = D ₁₅ = C _c =			
USCS=	Classification AASHT	O=			
Remarks Water Content: 15.4 %					

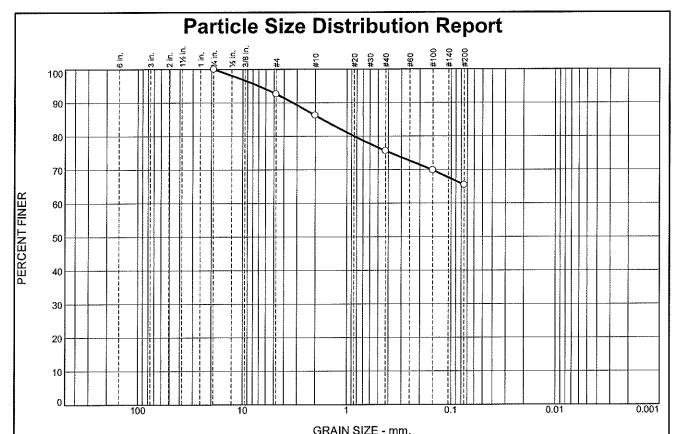
Location: B-2, S-3, 4 - 6' Sample Number: S-3

Depth: 4-6'

Date: 10/11/13

QCQA Laboratories, Inc.

Client: VHB


Project: APWAN Development - Silo Ridge

Schenectady, NY

Project No: G13-3523

Figure

B2/S3

VIV.III. VIZZ. III.								
	% Gra			% Sand			% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	7.4	6.4	10.6	10.2	65.4	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
#4	92.6		
#10	86.2		
#40	75.6		
#100	69.8		
#200	65.4		
	İ		

	Soil Description	Walter Commence of the Commenc			
PL=	Atterberg Limits LL=	PI=			
D ₉₀ = 3.2936 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 1.7065 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =			
USCS=	Classification AASHT	O=			
Remarks Water Content: 16.2 %					

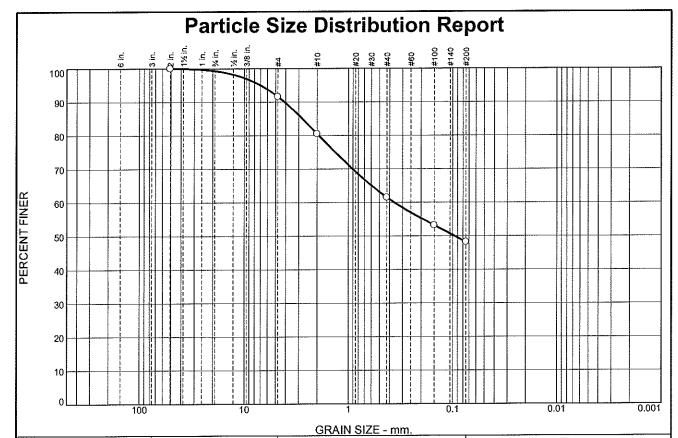
Location: B-2, S-4, 6 - 8' Sample Number: S-4

Depth: 6-8

Date: 10/11/13

QCQA Laboratories, Inc.

Client: VHB


Project: APWAN Development - Silo Ridge

Schenectady, NY

Project No: G13-3523

Figure

B2/S4

		% Gravel			% Sand		% Fines	
% +3"		Coarse Fine Coarse		Medium	Fine	Silt	Clay	
0.0		0.7	7.7	11.1	19.0	13.3	48.2	
SIEVE	PERCENT	SPEC.*	PA:	88?		Soil D	escription	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2	100.0		
#4	91.6		
#10	80.5		
#40	61.5		
#100	53.2		
#200	48.2		

	Soil Description					
PL=	Atterberg Limits LL=	PI=				
D ₉₀ = 4.1081 D ₅₀ = 0.0962 D ₁₀ =	Coefficients D ₈₅ = 2.7708 D ₃₀ = C _u =	D ₆₀ = 0.3613 D ₁₅ = C _c =				
USCS=	Classification AASHT)=				
Remarks Water Content: 12.8 %						

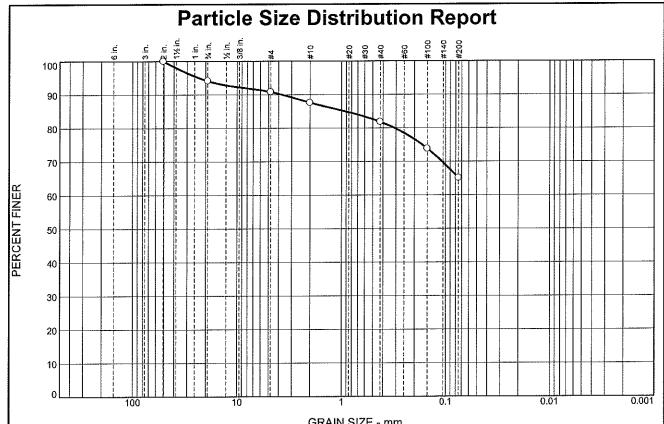
Location: B-4, S-2, 2 - 4' Sample Number: S-2

Depth: 2-41

Date: 10/11/13

QCQA Laboratories, Inc.

Project: APWAN Development - Silo Ridge


Schenectady, NY

Project No: G13-3523

Figure

B4/S2

⁽no specification provided)

GRAIN SIZE - IIIII.							
	% G	ravel	vel % Sand			% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	5.9	3,3	3.2	5.8	16.7	65.1	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2	100.0		
.75	94.1		
#4	90.8		
#10	87.6		
#40	81.8		
#100	73.8		
#200	65.1		

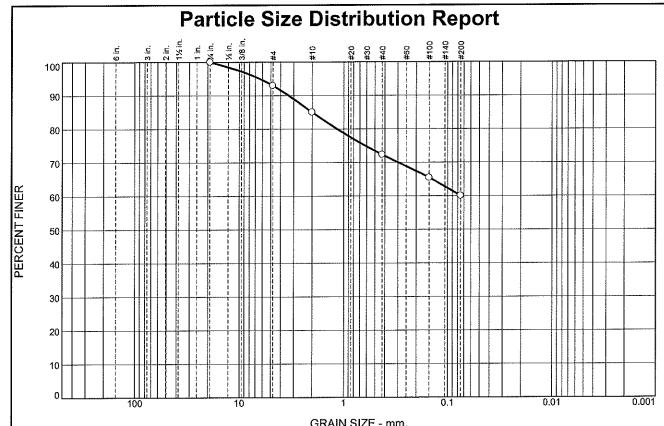
2.0	10.7	
	Soil Description	1112
PL=	Atterberg Limits LL=	P[=
D ₉₀ = 3.714 D ₅₀ = D ₁₀ =	Coefficients D85= 0.9293 D30= Cu=	D ₆₀ = D ₁₅ = C _c =
USCS=	<u>Classification</u> AASHTO)=
Water Conte	Remarks ent: 17.9 %	

Location: B-5, S-6, 14 - 16' **Sample Number:** S-6 **Depth:** 14-16'

Date: 10/11/13

QCQA Laboratories, Inc.

Client: VHB


Project: APWAN Development - Silo Ridge

Schenectady, NY

Project No: G13-3523

Figure

B5/S6

		% G	% Gravel % Sar		i	% Fines	% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	7.0	8.0	12.7	12.3	60.0	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
#4	93.0		
#10	85.0		
#40	72.3		
#100	65.4		
#200	60.0		

	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 3.3572 D ₅₀ = D ₁₀ =	Coefficients D85= 2.0000 D30= Cu=	D ₆₀ = 0.0750 D ₁₅ = C _c =
USCS=	Classification AASHT	O=
Water Content:	Remarks 16.7 %	

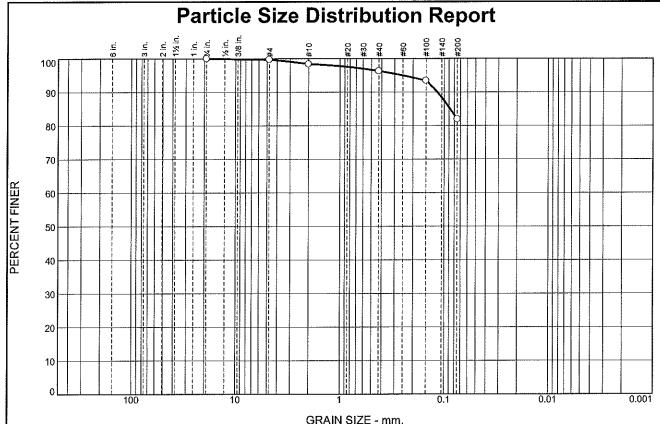
Location: B-6, S-5, 8 - 10' Sample Number: S-5

Depth: 8-10

Date: 10/11/13

QCQA Laboratories, Inc.

Client: VHB


Project: APWAN Development - Silo Ridge

Schenectady, NY

Project No: G13-3523

Figure

B6/S5

						1		
	% Gravel		% Sand		% Fines			
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	0.3	1.3	2.1	14.4	81.9	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
#4	99.7		
#10	98.4		
#40	96.3		
#100	93.4		
#200	81.9		

	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 0.1168 D ₅₀ = D ₁₀ =	Coefficients D85= 0.0881 D30= Cu=	D ₆₀ = D ₁₅ = C _c =
USCS=	Classification AASHT	O=
Water Content: 2	Remarks 22.6 %	

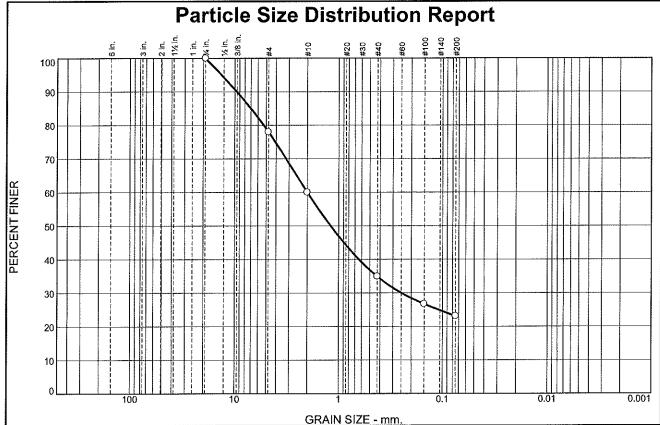
Date: 10/11/13

B10/S3

Location: B-10, S-3, 4 - 6' Sample Number: S-3

Depth: 4-6'

Client: VHB


Project: APWAN Development - Silo Ridge

Schenectady, NY

QCQA Laboratories, Inc.

Project No: G13-3523 Figure

⁽no specification provided)

% Sand % Fines % Gravel % +3" Silt Coarse Fine Coarse Medium Fine Clay 23,1 0.0 0.0 22.0 18.0 25.1 11.8

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	.75	100.0		
	#4	78.0		
	#10	60.0		
ı	#40	34.9		
	#100	26.7		
	#200	23.1		
1				
Į				
ı	*			

	Soil Description	
SI -	Atterberg Limits	DI-
PL=	LL=	PI=
D ₉₀ = 9.5727 D ₅₀ = 1.1914 D ₁₀ =	Coefficients D85= 7.0101 D30= 0.2487 Cu=	D ₆₀ = 2.0000 D ₁₅ = C _c =
USCS=	Classification AASHTO)=
Water Content:	<u>Remarks</u> 5.1 %	

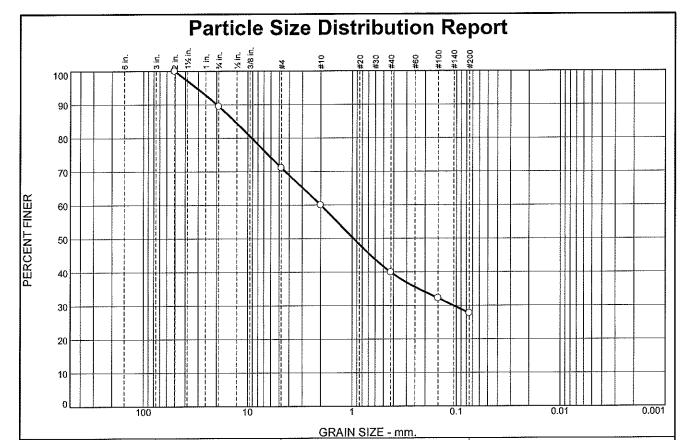
* (no specification provided)

Location: B-11, S-2, 2 - 4' Sample Number: S-2

Depth: 2 - 41

Date: 10/11/13

QCQA Laboratories, Inc.


Project: APWAN Development - Silo Ridge

Schenectady, NY

Project No: G13-3523

Figure

B11/S2

0.4 - 4.0			% Gravel		1	% Sand		% Fines	
	% +3"	Coars		Fine	Coarse	Medium	Fine	Silt	Clay
0.0		10.5	10.5 18	18.4		20.1	12.2	27.7	7
	eieve pei	CENT S	DEC *	DAG	-63		Call D	osorintian	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2 .75 #4 #10 #40 #100 #200	FINER 100.0 89.5 71.1 60.0 39.9 32.2 27.7	PERCENT	(X=NO)

	Soil Description	
PL=	Atterberg Limits LL=	P =
D ₉₀ = 19.8675 D ₅₀ = 0.9720 D ₁₀ =	Coefficients D85= 13,3223 D30= 0.1065 Cu=	D ₆₀ = 2.0000 D ₁₅ = C _c =
USCS=	Classification AASHTO)=
Water Content: 7	Remarks .4 %	

Location: B-12, S-1, 0 - 2' Sample Number: S-1

Depth: 0-21

Client: VHB

Project: APWAN Development - Silo Ridge

Schenectady, NY

QCQA Laboratories, Inc.

Project No: G13-3523

Figure

Date: 10/11/13

B12/S1

APPENDIX D

FILL MATERIAL AND PLACEMENT RECOMMENDATIONS

FILL MATERIAL AND PLACEMENT RECOMMENDATIONS

I. Fill Material Recommendations

A. Subbase Stone

The subbase stone course placed as the aggregate course beneath slab-on-grade and pavement construction should consist of a crusher run stone meeting the material and gradation requirements of New York State Department of Transportation (NYSDOT), Standard Specifications, Item 304.12 – Type 2 Subbase Course (Item 304.14 could also be used beneath pavement construction).

B. Structural Fill

Structural Fill should consist of a well graded crusher-run stone or bank-run sand and gravel, which is free of clay, expansive shale, organics and friable or deleterious particles. Imported Structural Fill should also conform to the following gradation requirements.

<u>Sieve Size</u>	Percent Finer by Weight
3 inch	100
¼ inch	25-85
No. 40	5-50
No. 200	0-10

C. Drainage Stone

Drainage Stone should consist of a blend of crusher run stone or crushed gravel meeting the material and gradation requirements of NYSDOT, Standard Specifications Section 703-02, Size Designations No. 1 and No. 2 (½-inch and 1-inch washed gravel or stone).

D. Pervious Granular Backfill

Pervious Granular Backfill should consist of a free draining granular fill, which meets the minimum requirements of NYSDOT, Standard Specifications Section 703-07, Concrete Sand, with 100 percent passing 3/8 inch sieve to maximum of 3 percent passing a No. 200 sieve.

E. General Fill

General Fill may be used for backfill in non-loaded areas outside of foundation, structure and slab-on-grade areas. General Fill may consist of on-site or imported soils, which are free of topsoil, organics, debris and deleterious materials and are of a moisture content suitable for proper compaction.

II. Fill Placement and Compaction Recommendations

All controlled fill placed beneath foundations, structures, utilities, slab-on-grade and pavement construction should be compacted to a minimum of 95 percent of the maximum dry density as measured by the modified Proctor test (ASTM D1557), or as directed by the geotechnical engineer. Fill placed in non-loaded grass areas can be compacted to a minimum of 90 percent of the maximum dry density (ASTM D1557).

Placement of fill should not exceed a maximum loose lift thickness of 6 to 9 inches and should be reduced in conjunction with the compaction equipment used so that the required density is attained.

Fill should have a moisture content within two percent of the optimum moisture content prior to compaction. Subgrades should be properly drained and protected from moisture and frost. Placement of fill on frozen subgrades is not acceptable. It is recommended that all fill placement and compaction be monitored and tested by qualified geotechnical personnel.

III. Quality Assurance Testing

The following minimum laboratory and field quality assurance testing frequencies are recommended to confirm fill material quality and post placement and compaction conditions. These minimum frequencies are based on generally uniform material properties and placement conditions. Should material properties vary or conditions at the time of placement vary (i.e. moisture content, placement and compaction, procedures or equipment, etc.), then additional testing is recommended. Additional testing, if required, should be determined by qualified geotechnical personnel based on evaluation of the actual fill material and construction conditions.

A. Laboratory Testing of Material Properties

- Moisture content (ASTM D-2216) 1 test per 4000 cubic yards or no less than 2 tests per each material type.
- Grain Size Analysis (ASTM D-422) 1 test per 4000 cubic yards or no less than 2 tests per each material type.
- Modified Proctor Moisture Density Relationship (ASTM D-1557) 1 test per 4000 cubic yards or no less than 1 test per each material type.

B. Field In-Place Moisture/Density Testing (ASTM D D-6938)

- Backfilling along trenches and foundation walls 1 test per 50 lineal feet per lift.
- Backfilling Isolated Excavations (i.e. column foundations) 1 test per lift.
- Filling in open areas for slab-on-grade and pavement construction 1 test per 2500 square feet per lift.

APPENDIX E

INFORMATION REGARDING THIS GEOTECHNICAL ENGINEERING REPORT

IMPORTANT INFORMATION REGARDING THIS GEOTECHNICAL ENGINEERING REPORT

Transtech Engineering Services, P.C. (TransTech), has endeavored to prepare this report in accordance with generally accepted geotechnical engineering principles and practices. Geotechnical engineering analyses and evaluations are based partly on judgment and opinion, and are therefore far less exact than other engineering disciplines. Accordingly, TransTech believes that providing the report user with information regarding the preparation and limitations of this report will aid in the proper interpretation and implementation of the conclusions and recommendations presented in this report. The following information is provided in an effort to reduce potential geotechnical-related delays, cost over-runs and other problems that can develop during the design and construction process.

SCOPE OF SERVICES: The scope of this report is limited to the specific items identified in TransTech's Proposal for services for this project. The scope of services is limited to a geotechnical engineering evaluation of the conditions disclosed by the subsurface exploration and does not include any geoenvironmental assessment or investigation for the presence, absence or prevention of any hazardous or toxic materials or conditions (or mold) in the soil, groundwater or surface water within or beyond the project site. Unanticipated environmental problems can lead to significant project cost over-runs and TransTech recommends that the Owner retain a geoenvironmental consultant to discuss risk management guidance.

PROJECT-SPECIFIC FACTORS: The conclusions and recommendations presented in this report were prepared based on project-specific factors described in the report, such as the size, loading, type of construction and intended use of the structure; the location of the structure on the site; planned structure elevation(s) and site grading; other planned or existing site improvements, such as access roads, parking lots, underground utilities; and any other pertinent project information. Changes to the project details may alter the factors considered in development of the report conclusions and recommendations. As such, TransTech cannot accept responsibility or liability for problems that may develop if we are not consulted regarding any changes to the project-specific factors that were assumed during preparation of the report.

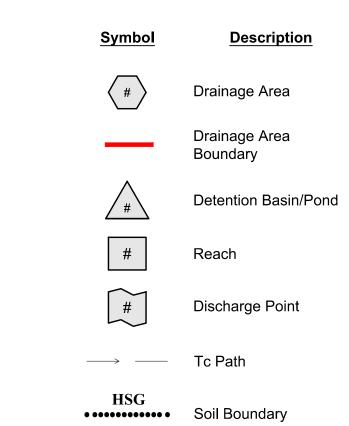
SUBSURFACE CONDITIONS: The subsurface exploration program for this project consisted of sampling only at discrete test locations. TransTech has used judgment to infer the subsurface conditions between the discrete test locations. The conclusions and recommendations presented in this report were based on the subsurface conditions disclosed/inferred at and between the discrete test locations at the time the subsurface exploration program was performed. We point out that surface and subsurface conditions at the site are subject to change subsequent to preparation of this report. Such changes may include floods, earthquakes, groundwater fluctuations, and construction activities at the site and/or adjoining properties. It should be understood that the actual subsurface conditions could vary from the conditions inferred by TransTech between and away from the discrete test locations, which could be revealed during construction. As such, TransTech should be retained during construction to confirm that the subsurface conditions are consistent with the conditions disclosed by the subsurface exploration program, and to refine our conclusions and recommendations in the event that the subsurface conditions differ from those disclosed by the subsurface exploration program.

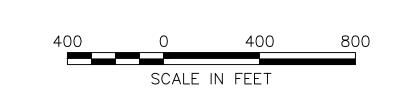
USE OF THIS GEOTECHNICAL ENGINEERING REPORT: This report has been prepared for the exclusive use of our client, and any other parties specifically identified in the report, for specific application to the site and project-specific conditions described in the report. This report should not be applied to any other site or project, or for any uses other than those originally intended without TransTech's consent.

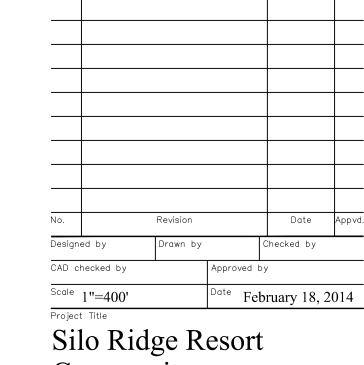
MISINTERPRETATION OF THIS REPORT: The conclusions and recommendations presented in this report are subject to misinterpretation by the design team and contractors, which can result in costly problems. The risk of misinterpretation by the design team can be reduced by having appropriate members of the design team confer with TransTech regarding the conclusions and recommendations presented in this report prior to completing the plans and specifications. In addition, TransTech should be retained to review pertinent elements of the design team's final plans and specifications prior to bidding to confirm that the recommendations presented in this report have been properly interpreted and applied. The risk of misinterpretation by contractors can be reduced by retaining TransTech to attend prebid and preconstruction conferences, and to provide construction observation.

COMPONENTS OF THIS REPORT: Subsurface exploration logs, figures, tables and any other report components are subject to misinterpretation if they are separated from this report. This may occur if copies of the boring logs or other report components are given to the contractors during the bid preparation process. To minimize this risk, report components should not be separated from the report and only complete copies of this report should be distributed as appropriate.

ALTERATION OF THIS REPORT: It is a violation of Section 7209 Subdivision 2 of the New York State Education Law for any person to alter this report in any way, except under the direction of a licensed professional engineer.


Attachment E
Drainage Drawings and Calculations (See
attached CD)



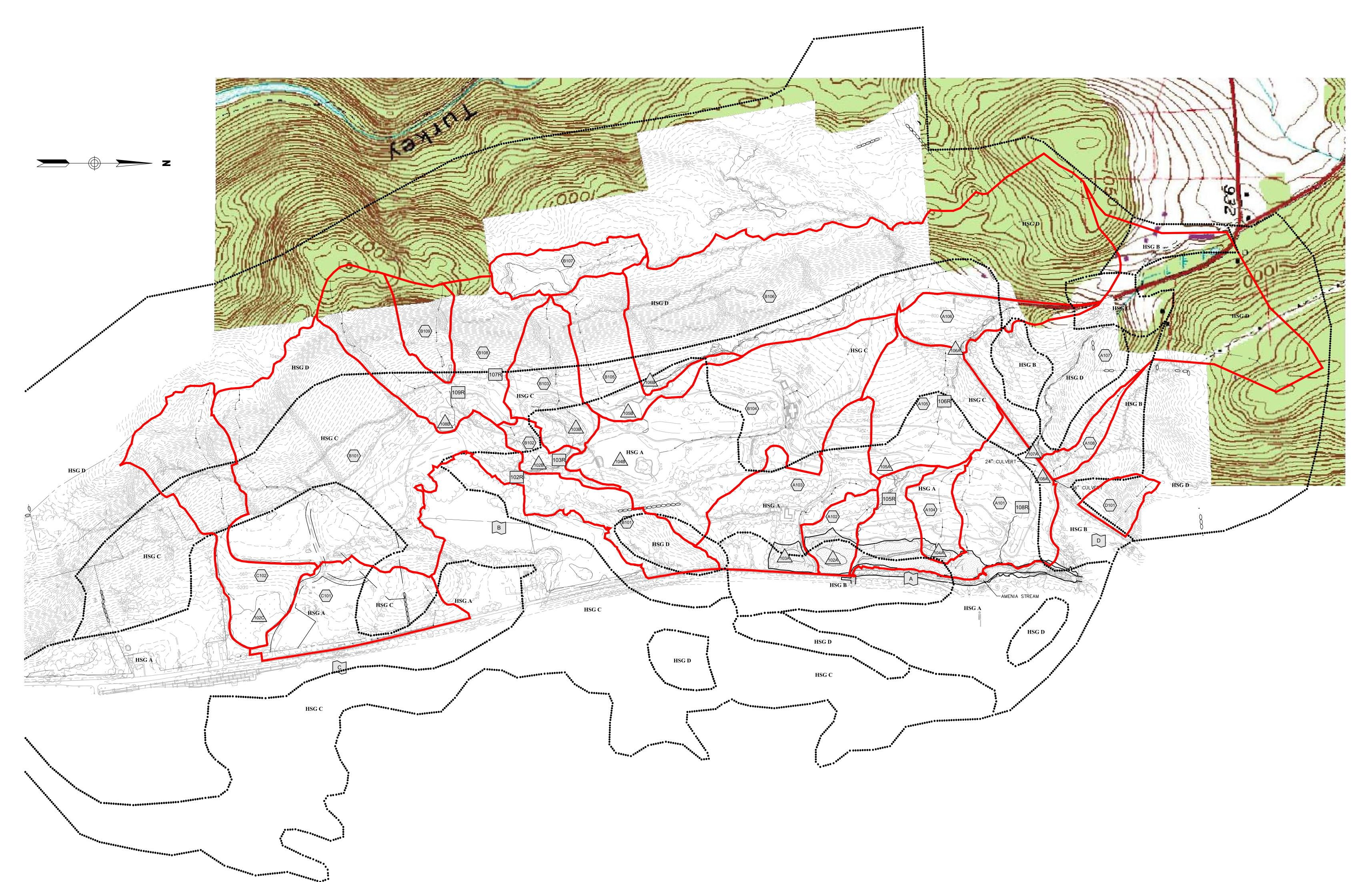

Engineering, Surveying & Landscape Architecture, P.C.

Planning
Transportation
Land Development
Environmental Services

50 Main Street - Suite 360 White Plains, NY 10606 914.761.3582 • FAX 914.761.3582

Community

4651 Route 22 Amenia, New York Permitting


Not Approved for Construction

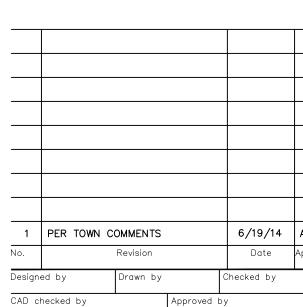
Existing Conditions Drainage Area Map

Fig. 1

Sheet of 1 1

Project Number 29011.00

Engineering, Surveying & Landscape Architecture, P.C.

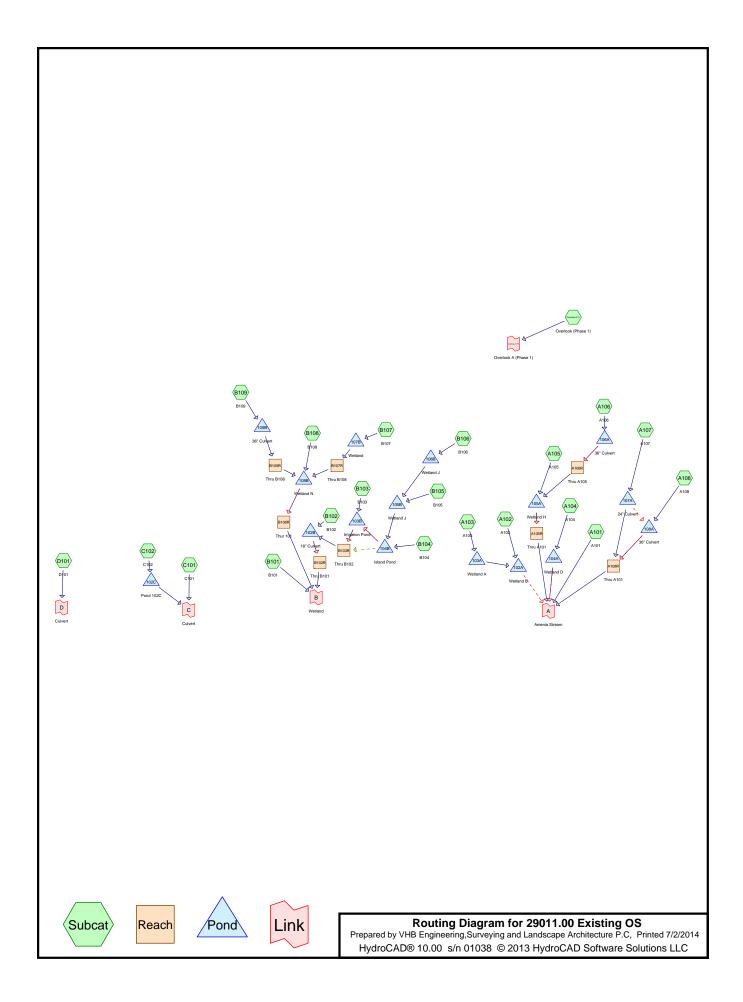

50 Main Street - Suite 360 White Plains, NY 10606 914.761.3582 • FAX 914.761.3582

Drainage Area Boundary

Detention Basin/Pond

Discharge Point

HSG
•••••••• Soil Boundary



Date February 18, 2014

Not Approved for Construction

SCALE IN FEET

Proposed Conditions Drainage Area Map

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
170.428	39	>75% Grass cover, Good, HSG A (A101, A102, A103, A104, A105, B101, B102, B103, B104, B105, B106, C101, C102)
26.805	61	>75% Grass cover, Good, HSG B (A101, A102, A103, A104, A106, A107, A108, B106)
137.826	74	>75% Grass cover, Good, HSG C (A101, A103, A105, A106, A107, B101, B102, B103, B104, B105, B106, B108, B109, C101, C102, Overlook (P1))
11.938	80	>75% Grass cover, Good, HSG D (A103, A106, A107, B101, B103, B105, B106, B107, B108, C102)
1.220	98	Building roof (A103, A106, A107, A108, B101, B104, B106)
6.869	96	Gravel surface (A101, A103, A105, A106, A107, A108, B101, B102, B103, B104, B105, B106, B107, B108, C101, C102)
18.932	98	Paved surface (A101, A102, A103, A104, A105, A106, A107, B101, B102, B103, B104, B105, B106, B108, B109, C101)
1.027	98	Rock Outcrop/Ledge (C101, C102)
0.441	30	Sand Trap, HSG C (A103, B101, B102, B103, B104, B108)
0.757	30	Sand trap, HSG A (A101, A102, A103, A104, A105, B104, B105, B106)
0.031	30	Sand trap, HSG B (A101, A102)
10.757	98	Water Surface (A101, A102, A103, A104, A107, A108, B101, B103, B104, B105, B106, C102)
27.787	30	Woods, Good, HSG A (A101, A102, A103, A104, A105, A106, B101, B102, B104, B106, C101, C102)
15.395	55	Woods, Good, HSG B (A101, A103, A104, A107, A108)
81.217	70	Woods, Good, HSG C (A101, A103, A105, A106, A107, B101, B103, B104, B105, B106, B108, B109, C101, C102, Overlook (P1))
279.023	77	Woods, Good, HSG D (A103, A106, A107, B101, B103, B104, B105, B106, B107, B108, B109, C102, D101)
790.453	66	TOTAL AREA

Printed 7/2/2014 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
198.972	HSG A	A101, A102, A103, A104, A105, A106, B101, B102, B103, B104, B105, B106,
		C101, C102
42.231	HSG B	A101, A102, A103, A104, A106, A107, A108, B106
219.484	HSG C	A101, A103, A105, A106, A107, B101, B102, B103, B104, B105, B106, B108,
		B109, C101, C102, Overlook (P1)
290.961	HSG D	A103, A106, A107, B101, B103, B104, B105, B106, B107, B108, B109, C102,
		D101
38.805	Other	A101, A102, A103, A104, A105, A106, A107, A108, B101, B102, B103, B104,
		B105, B106, B107, B108, B109, C101, C102
790.453		TOTAL AREA

Printed 7/2/2014 Page 4

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
170.428	26.805	137.826	11.938	0.000	346.997	>75% Grass cover, Good	A101,
							A102,
							A103,
							A104,
							A105,
							A106,
							A107,
							A108,
							B101,
							B102,
							B103,
							B104,
							B105,
							B106,
							B107,
							B108,
							B109,
							C101,
							C102,
							Overlook
0.000	0.000	0.000	0.000	4 000	4 000	Duilding roof	(P1)
0.000	0.000	0.000	0.000	1.220	1.220	Building roof	A103,
							A106,
							A107,
							A108,
							B101, B104,
							B104, B106
0.000	0.000	0.000	0.000	6.869	6.869	Gravel surface	A101,
0.000	0.000	0.000	0.000	0.009	0.009	Graver Surface	A101, A103,
							A105,
							A105, A106,
							A100, A107,
							A107, A108,
							B101,
							B101,
							B102,
							B104,
							B105,
							B106,
							B107,
							B108,
							C101,
							C102

Printed 7/2/2014 Page 5

Ground Covers (all nodes) (continued)

HSG- (acres		HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.00	0.000	0.000	0.000	18.932	18.932	Paved surface	A101,
							A102,
							A103,
							A104,
							A105,
							A106,
							A107,
							B101,
							B102,
							B103,
							B104,
							B105,
							B106,
							B108,
							B109,
							C101
0.00	0.000	0.000	0.000	1.027	1.027	Rock Outcrop/Ledge	C101,
							C102
0.00	0.000	0.441	0.000	0.000	0.441	Sand Trap	A103,
							B101,
							B102,
							B103,
							B104,
							B108
0.75	7 0.031	0.000	0.000	0.000	0.788	Sand trap	A101,
							A102,
							A103,
							A104,
							A105,
							B104,
							B105,
							B106
0.00	0.000	0.000	0.000	10.757	10.757	Water Surface	A101,
							A102,
							A103,
							A104,
							A107,
							A108,
							B101,
							B103,
							B104,
							B105,
							B106,
							C102

Printed 7/2/2014 Page 6

Ground Covers (all nodes) (continued)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
27.787	15.395	81.217	279.023	0.000	403.422	Woods, Good	A101,
							A102,
							A103,
							A104,
							A105,
							A106,
							A107,
							A108,
							B101,
							B102,
							B103,
							B104,
							B105,
							B106,
							B107,
							B108,
							B109,
							C101,
							C102,
							D101,
							Overlook
							(P1)
198.972	42.231	219.484	290.961	38.805	790.453	TOTAL AREA	

Printed 7/2/2014 Page 7

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	102A	501.90	500.90	80.0	0.0125	0.013	24.0	0.0	0.0
2	102B	492.20	491.10	20.0	0.0550	0.025	18.0	0.0	0.0
3	103A	500.90	501.90	80.0	-0.0125	0.013	24.0	0.0	0.0
4	104A	507.70	507.30	20.0	0.0200	0.025	12.0	0.0	0.0
5	104B	508.22	505.43	111.0	0.0251	0.025	24.0	0.0	0.0
6	105A	572.90	572.00	20.0	0.0450	0.025	18.0	0.0	0.0
7	106A	716.70	686.00	133.0	0.2308	0.025	36.0	0.0	0.0
8	107A	619.80	607.40	145.0	0.0855	0.010	24.0	0.0	0.0
9	108A	608.80	606.90	45.0	0.0422	0.025	36.0	0.0	0.0
10	108B	500.10	499.60	20.0	0.0250	0.025	18.0	0.0	0.0
11	109B	545.20	532.20	96.0	0.1354	0.025	36.0	0.0	0.0

29011.00 Existing OS

Type III 24-hr 100-Year Rainfall=8.00", la/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 8

Time span=0.00-60.00 hrs, dt=0.02 hrs, 3001 points x 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment A101: A101	Runoff Area=43.269 ac 4.21% Impervious Runoff Depth=1.24" Flow Length=1,315' Tc=31.0 min CN=46 Runoff=21.94 cfs 4.459 af
Subcatchment A102: A102	Runoff Area=9.187 ac 13.40% Impervious Runoff Depth=1.67" Flow Length=675' Tc=29.1 min CN=50 Runoff=7.85 cfs 1.276 af
Subcatchment A103: A103	Runoff Area=36.735 ac 8.79% Impervious Runoff Depth=1.89" Flow Length=1,190' Tc=45.1 min CN=52 Runoff=30.70 cfs 5.792 af
Subcatchment A104: A104	Runoff Area=9.432 ac 9.40% Impervious Runoff Depth=1.13" Flow Length=1,015' Tc=29.2 min CN=45 Runoff=4.22 cfs 0.892 af
Subcatchment A105: A105	Runoff Area=34.264 ac 3.27% Impervious Runoff Depth=2.84" Flow Length=1,326' Tc=19.2 min CN=60 Runoff=74.71 cfs 8.115 af
Subcatchment A106: A106	Runoff Area=15.338 ac 8.12% Impervious Runoff Depth=4.87" Flow Length=1,260' Tc=26.7 min CN=76 Runoff=53.17 cfs 6.226 af
Subcatchment A107: A107	Runoff Area=95.411 ac 2.35% Impervious Runoff Depth=4.48" Flow Length=3,685' Tc=61.0 min CN=73 Runoff=199.14 cfs 35.649 af
Subcatchment A108: A108	Runoff Area=5.526 ac 2.32% Impervious Runoff Depth=2.48" Flow Length=1,235' Tc=30.1 min CN=57 Runoff=8.33 cfs 1.141 af
Subcatchment B101: B101	Runoff Area=127.641 ac 0.75% Impervious Runoff Depth=3.21" Flow Length=2,934' Tc=43.8 min CN=63 Runoff=221.63 cfs 34.177 af
Subcatchment B102: B102	Runoff Area=6.499 ac 2.62% Impervious Runoff Depth=2.01" Flow Length=637' Tc=19.6 min CN=53 Runoff=8.62 cfs 1.087 af
Subcatchment B103: B103	Runoff Area=21.581 ac 11.93% Impervious Runoff Depth=4.35" Flow Length=1,130' Tc=38.7 min CN=72 Runoff=56.16 cfs 7.832 af
Subcatchment B104: B104	Runoff Area=80.536 ac 13.45% Impervious Runoff Depth=3.21" Flow Length=3,223' Tc=33.2 min CN=63 Runoff=161.16 cfs 21.564 af
Subcatchment B105: B105	Runoff Area=23.978 ac 2.94% Impervious Runoff Depth=3.97" Flow Length=1,400' Tc=38.0 min CN=69 Runoff=57.24 cfs 7.934 af
Subcatchment B106: B106	Runoff Area=130.289 ac 0.83% Impervious Runoff Depth=4.87" Flow Length=5,409' Tc=85.7 min CN=76 Runoff=237.14 cfs 52.891 af
Subcatchment B107: B107	Runoff Area=14.330 ac 0.00% Impervious Runoff Depth=5.00" Flow Length=907' Tc=37.9 min CN=77 Runoff=43.23 cfs 5.972 af
Subcatchment B108: B108	Runoff Area=46.768 ac 1.07% Impervious Runoff Depth=4.87" Flow Length=2,241' Tc=39.8 min CN=76 Runoff=134.03 cfs 18.985 af

Printed 7/2/2014

Page 9

Subcatchment B109: B109 Runoff Area=11.276 ac 0.04% Impervious Runoff Depth=5.00"

Flow Length=1,048' Tc=28.5 min CN=77 Runoff=38.96 cfs 4.699 af

Subcatchment C101: C101 Runoff Area=30.507 ac 4.58% Impervious Runoff Depth=2.01"

Flow Length=1,500' Tc=31.9 min CN=53 Runoff=33.26 cfs 5.102 af

Subcatchment C102: C102 Runoff Area=40.386 ac 4.49% Impervious Runoff Depth=3.34"

Flow Length=2,597' Tc=45.5 min CN=64 Runoff=71.85 cfs 11.234 af

Subcatchment D101: D101 Runoff Area=6.500 ac 0.00% Impervious Runoff Depth=5.00"

Flow Length=1,036' Tc=26.0 min CN=77 Runoff=23.35 cfs 2.709 af

Subcatchment Overlook (P1): Overlook

Runoff Area=1.000 ac 0.00% Impervious Runoff Depth=4.48"

Flow Length=176' Tc=7.5 min CN=73 Runoff=5.09 cfs 0.374 af

Reach A105R: Thru A101 Avg. Flow Depth=2.24' Max Vel=8.58 fps Inflow=122.42 cfs 14.325 af

n=0.050 L=1,075.0' S=0.0577 '/' Capacity=152.54 cfs Outflow=121.59 cfs 14.325 af

Reach A106R: Thru A105 Avg. Flow Depth=1.25' Max Vel=7.29 fps Inflow=53.17 cfs 6.226 af

n=0.050 L=1,215.0' S=0.0922 $^{\prime\prime}$ Capacity=153.12 cfs Outflow=52.60 cfs 6.226 af

Reach A108R: Thru A101 Avg. Flow Depth=2.75' Max Vel=11.64 fps Inflow=204.33 cfs 36.790 af

 $n = 0.050 \quad L = 1,090.0' \quad S = 0.0862 \; \text{'/'} \quad Capacity = 244.78 \; \text{cfs} \quad Outflow = 203.96 \; \text{cfs} \quad 36.790 \; \text{af} \quad 10.050 \; \text{cfs} \quad 10.050 \; \text{cf$

Reach B102R: Thru B101 Avg. Flow Depth=2.97' Max Vel=5.90 fps Inflow=348.43 cfs 89.057 af

n=0.050 L=122.0' S=0.0164 '/' Capacity=356.26 cfs Outflow=348.43 cfs 89.055 af

Reach B103R: Thru B102 Avg. Flow Depth=3.85' Max Vel=6.86 fps Inflow=346.32 cfs 87.980 af

n=0.050 L=585.0' S=0.0171 '/' Capacity=374.39 cfs Outflow=346.19 cfs 87.971 af

Reach B107R: Thru B108 Avg. Flow Depth=0.49' Max Vel=6.77 fps Inflow=31.60 cfs 5.696 af

n=0.050 L=2,040.0' S=0.2294 '/' Capacity=144.21 cfs Outflow=31.27 cfs 5.696 af

Reach B108R: Thur 101 Avg. Flow Depth=1.88' Max Vel=6.44 fps Inflow=189.14 cfs 29.356 af

n=0.050 L=233.0' S=0.0318'/' Capacity=474.00 cfs Outflow=189.13 cfs 29.356 af

Reach B109R: Thru B108 Avg. Flow Depth=1.11' Max Vel=6.55 fps Inflow=38.91 cfs 4.699 af

n=0.050 L=355.0' S=0.0851 '/' Capacity=147.09 cfs Outflow=38.86 cfs 4.699 af

Pond 102A: Wetland B Peak Elev=500.30' Storage=88,645 cf Inflow=7.85 cfs 2.035 af

Primary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af

Pond 102B: 18" Culvert Peak Elev=496.17' Storage=8,424 cf Inflow=348.44 cfs 89.058 af

Primary=10.04 cfs 19.685 af Secondary=341.07 cfs 69.373 af Outflow=348.43 cfs 89.057 af

Pond 102C: Pond 102C Peak Elev=509.11' Storage=334,468 cf Inflow=71.85 cfs 11.234 af

Outflow=8.61 cfs 4.107 af

Pond 103A: Wetland A Peak Elev=502.29' Storage=242,805 cf Inflow=30.70 cfs 5.792 af

24.0" Round Culvert n=0.013 L=80.0' S=-0.0125 '/' Outflow=0.93 cfs 0.759 af

Pond 103B: Irrigation Pond Peak Elev=506.84' Storage=94,914 cf Inflow=160.83 cfs 51.938 af

Primary=17.46 cfs 11.880 af Secondary=141.03 cfs 39.808 af Outflow=158.49 cfs 51.688 af

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C

Printed 7/2/2014

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Page 10

Pond 104A: Wetland D Peak Elev=508.04' Storage=7,629 cf Inflow=4.22 cfs 0.892 af

Primary=0.35 cfs 0.420 af Secondary=2.28 cfs 0.450 af Outflow=2.63 cfs 0.870 af

Pond 104B: Island Pond Peak Elev=510.92' Storage=677,682 cf Inflow=345.44 cfs 82.388 af

Primary=15.55 cfs 21.840 af Secondary=117.32 cfs 22.266 af Tertiary=188.01 cfs 36.292 af Outflow=320.88 cfs 80.398 af

Pond 105A: Wetland H Peak Elev=575.39' Storage=69,760 cf Inflow=122.88 cfs 14.342 af

Primary=11.24 cfs 7.961 af Secondary=111.18 cfs 6.364 af Outflow=122.42 cfs 14.325 af

Pond 105B: Wetland J Peak Elev=516.66' Storage=55,979 cf Inflow=261.99 cfs 60.825 af

Outflow=261.72 cfs 60.824 af

Pond 106A: 36" Culvert Peak Elev=720.64' Storage=236 cf Inflow=53.17 cfs 6.226 af

Primary=53.17 cfs 6.226 af Secondary=0.00 cfs 0.000 af Outflow=53.17 cfs 6.226 af

Pond 106B: Wetland J Peak Elev=527.29' Storage=26,547 cf Inflow=237.14 cfs 52.891 af

Outflow=237.03 cfs 52.891 af

Pond 107A: 24" Culvert Peak Elev=626.49' Storage=3,862 cf Inflow=199.14 cfs 35.649 af

Primary=45.09 cfs 22.255 af Secondary=154.06 cfs 13.394 af Outflow=199.16 cfs 35.649 af

Pond 107B: Wetland Peak Elev=973.04' Storage=66,447 cf Inflow=43.23 cfs 5.972 af

Outflow=31.60 cfs 5.696 af

Pond 108A: 36" Culvert Peak Elev=613.52' Storage=305 cf Inflow=159.27 cfs 14.535 af

Primary=58.91 cfs 8.660 af Secondary=102.50 cfs 5.875 af Outflow=159.24 cfs 14.535 af

Pond 108B: Wetland N Peak Elev=501.79' Storage=18,505 cf Inflow=189.32 cfs 29.381 af

Primary=4.39 cfs 4.478 af Secondary=185.38 cfs 24.878 af Outflow=189.14 cfs 29.356 af

Pond 109B: 36" Culvert Peak Elev=548.80' Storage=393 cf Inflow=38.96 cfs 4.699 af

Outflow=38.91 cfs 4.699 af

Link A: Amenia Stream Inflow=292.28 cfs 56.445 af

Primary=292.28 cfs 56.445 af

Link B: Wetland Inflow=636.55 cfs 152.587 af

Primary=636.55 cfs 152.587 af

Link C: Culvert Inflow=33.26 cfs 9.208 af

Primary=33.26 cfs 9.208 af

Link D: Culvert Inflow=23.35 cfs 2.709 af

Primary=23.35 cfs 2.709 af

Link Overlook-A (P1): Overlook A (Phase 1) Inflow=5.09 cfs 0.374 af

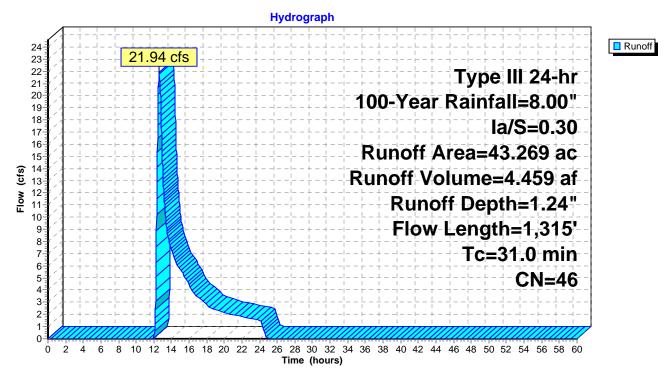
Primary=5.09 cfs 0.374 af

Total Runoff Area = 790.453 ac Runoff Volume = 238.110 af Average Runoff Depth = 3.61" 95.96% Pervious = 758.517 ac 4.04% Impervious = 31.936 ac

Printed 7/2/2014

Page 11

Summary for Subcatchment A101: A101


Runoff = 21.94 cfs @ 12.61 hrs, Volume= 4.459 af, Depth= 1.24"

	Area	(ac)	C	N Des	cription									
*	0.	000	9	8 Build	ding roof									
*	1.	819	9	8 Pave	Paved surface									
*	0.	089	9	6 Gra√	Gravel surface									
*	0.	001	9	8 Wate	ater Surface									
	31.	250	3			over, Good,								
		738	6	1 >759	% Grass co	over, Good,	HSG B							
		730				over, Good,								
	_	000				over, Good,	HSG D							
		164			ds, Good,									
		152			ds, Good,									
		880			ds, Good,									
*		000			ds, Good,									
*		223			d trap, HS0									
*		015			d trap, HS0									
_		000			d Trap, HS									
		269	4	,	ghted Aver	•								
		449			9% Pervio									
	1.	820		4.21	% Impervi	ous Area								
	Тс	Len	gth	Slope	Velocity	Capacity	Description							
	(min)	(fe	eet)	(ft/ft)	(ft/sec)	(cfs)	·							
	15.9	,	100	0.0400	0.11		Sheet Flow,							
							Grass: Bermuda n= 0.410 P2= 3.50"							
	3.0	4	430	0.1200	2.42		Shallow Concentrated Flow,							
							Short Grass Pasture Kv= 7.0 fps							
	3.5	3	360	0.0600	1.71		Shallow Concentrated Flow,							
							Short Grass Pasture Kv= 7.0 fps							
	8.6	4	425	0.0140	0.83		Shallow Concentrated Flow,							
							Short Grass Pasture Kv= 7.0 fps							
	31.0	1,3	315	Total										

Printed 7/2/2014

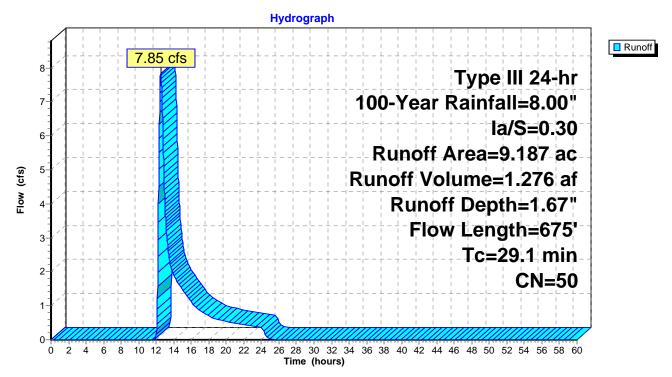
Page 12

Subcatchment A101: A101

Printed 7/2/2014

Page 13

Summary for Subcatchment A102: A102


Runoff = 7.85 cfs @ 12.52 hrs, Volume= 1.276 af, Depth= 1.67"

	Area	(ac)	CN	Desc	ription									
*	0.	000	98	Build	ling roof									
*	0.	387	98	Pave	Paved surface									
*	0.	000	96	Grav	ravel surface									
*	0.	844	98	Wate	ater Surface									
	3.	520	39	>75%	75% Grass cover, Good, HSG A									
	2.	156	61	>75%	75% Grass cover, Good, HSG B									
		000	74			over, Good,								
		000	80			over, Good,	HSG D							
		260	30		ds, Good,									
		000	55		ds, Good,									
		000	70		ds, Good,									
		000	77		ds, Good,									
*		004	30		trap, HS0									
*		016	30		trap, HS0									
*		000	30		l Trap, HS									
		187	50		hted Aver									
		956			0% Pervio									
	1.:	231		13.4	0% Imperv	rious Area								
	_													
	Tc	Lengt		Slope	Velocity	Capacity	Description							
_	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)								
	23.0	10	0 0	.0600	0.07		Sheet Flow,							
							Woods: Dense underbrush n= 0.800 P2= 3.50"							
	6.1	57	5 0	.0500	1.57		Shallow Concentrated Flow,							
_							Short Grass Pasture Kv= 7.0 fps							
	29.1	67	'5 T	otal										

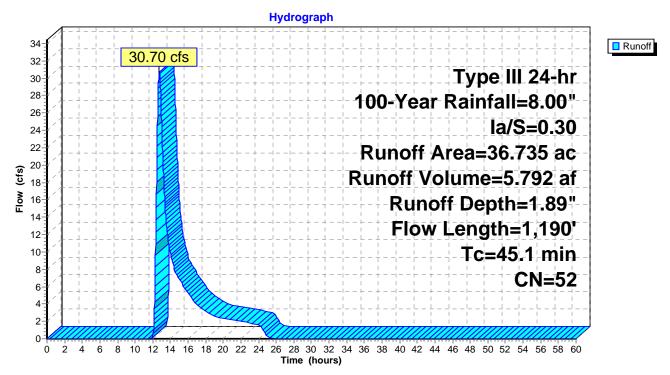
Printed 7/2/2014

Page 14

Subcatchment A102: A102

Printed 7/2/2014

Page 15


Summary for Subcatchment A103: A103

Runoff = 30.70 cfs @ 12.74 hrs, Volume= 5.792 af, Depth= 1.89"

	Area	(ac)	CN	l Desc	ription									
*	0.	334	98	Build	ing roof									
*	2.	378	98	3 Pave	ed surface									
*	0.	402	96	Grav	ravel surface									
*	0.	516	98	3 Wate	/ater Surface									
	14.	616	39	>75%	>75% Grass cover, Good, HSG A									
	3.	182	61	51 >75% Grass cover, Good, HSG B										
		880	74			over, Good,								
		029	80			over, Good,	HSG D							
		882	30		ds, Good,									
		635	55		ds, Good,									
		432	70		ds, Good,									
		137	77		ds, Good,									
*		095	30		trap, HS0									
^ +		000	30		trap, HS0									
_		009	30		l Trap, HS									
		735	52	_	hted Aver	•								
		507		_	1% Pervio									
	3.	228		8.79	% Impervi	ous Area								
	Тс	Leng	ıth	Slope	Velocity	Capacity	Description							
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description							
_	35.7	•		0.0200	0.05	(010)	Sheet Flow,							
	55.7	11	00	0.0200	0.03		Woods: Dense underbrush n= 0.800 P2= 3.50"							
	3.9	2	27	0.0190	0.96		Shallow Concentrated Flow,							
	0.0		_ '	0.0100	0.00		Short Grass Pasture Kv= 7.0 fps							
	0.5		75	0.1100	2.32		Shallow Concentrated Flow,							
	0.0		. •				Short Grass Pasture Kv= 7.0 fps							
	1.3	34	43	0.0400	4.54	18.14	Trap/Vee/Rect Channel Flow,							
	_	_	-				Bot.W=2.00' D=2.00' n= 0.050							
	3.7	4	45		2.00		Direct Entry, Pipe Flow							
	45.1	1,19	90	Total										

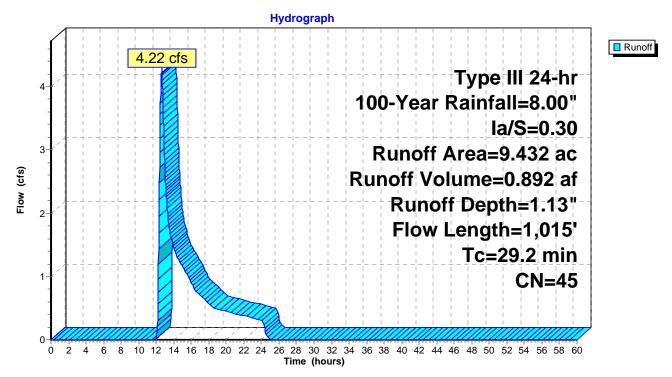
Printed 7/2/2014 Page 16

Subcatchment A103: A103

Printed 7/2/2014

Page 17

Summary for Subcatchment A104: A104


Runoff = 4.22 cfs @ 12.61 hrs, Volume= 0.892 af, Depth= 1.13"

	Area	(ac)	CN	Desc	cription									
*	0.	000	98	Build	ling roof									
*	0.	458	98	Pave	Paved surface									
*	0.	000	96	Grav	Gravel surface									
*	0.	429	98	Wate	ater Surface									
	8.	8.361 39 >75% Grass cover, Good, HSG A												
	0.043 61 >75% Grass cover, Good, HSG B													
	0.	000	74	>75%	⁶ Grass co √ √ √ √ √ √ √ √ √ √ √ √ √	over, Good,	, HSG C							
		000	80			over, Good,	, HSG D							
		071	30		ds, Good,									
		017	55		ds, Good,									
		000	70		ds, Good,									
		000	77		ds, Good,									
*		053	30		trap, HS0									
*		000	30		trap, HS0									
*		000	30		d Trap, HS									
	_	432	45		hted Aver									
		545			0% Pervio									
	0.	887		9.40	% Impervi	ous Area								
	Тс	Length	, (Slope	Velocity	Capacity	Description							
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	Description							
_	20.9	100		0200	0.08	(0.0)	Sheet Flow,							
	20.5	100	<i>J</i> 0.	0200	0.00		Grass: Bermuda n= 0.410 P2= 3.50"							
	3.4	375	5 0	0700	1.85		Shallow Concentrated Flow,							
	0. 1	0,1	0.	0,00	1.00		Short Grass Pasture Kv= 7.0 fps							
	1.5	255	5 0	1600	2.80		Shallow Concentrated Flow,							
		_0	<i>.</i>	. 555			Short Grass Pasture Kv= 7.0 fps							
	3.4	285	5 0.	0400	1.40		Shallow Concentrated Flow,							
	. .	_0		• •			Short Grass Pasture Kv= 7.0 fps							
	29.2	1,015	5 To	otal			•							

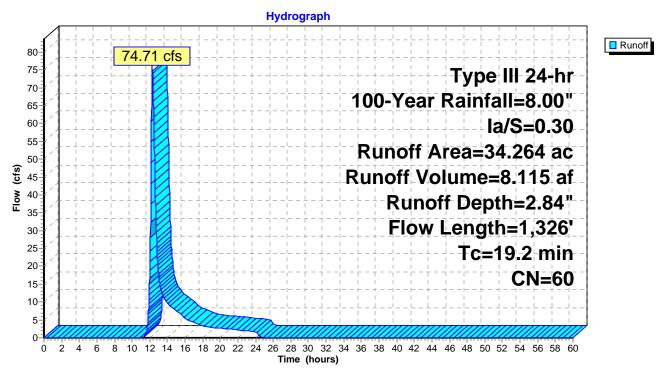
Printed 7/2/2014

Page 18

Subcatchment A104: A104

Printed 7/2/2014

Page 19


Summary for Subcatchment A105: A105

Runoff = 74.71 cfs @ 12.29 hrs, Volume= 8.115 af, Depth= 2.84"

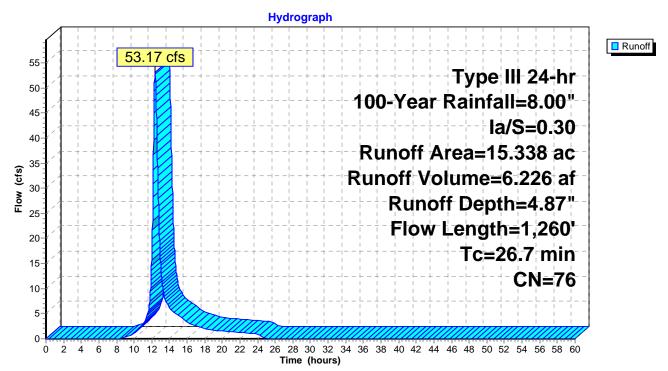
	Area	(ac) (CN D	escri	ption							
*	0.	000	98 B	uildin	g roof							
*	1.	119	98 P	Paved surface								
*	0.	880	96 G	ravel surface								
*	0.	000	98 W	/ater	Surface							
		167				over, Good						
						over, Good,						
	15.	618				over, Good,						
						over, Good,	, HSG D					
					s, Good,							
					s, Good,							
		911			s, Good,							
		000			, Good,							
*		135			rap, HS0							
*		000			rap, HS0							
					Γrap, HS							
		_			ted Aver							
		145	_		6 Pervio							
	1.	119	3.	.27%	Impervi	ous Area						
	То	Longth	Clar	۰۵ ۱	/alaaitu	Canacity	Description					
	Tc (min)	Length (feet)			/elocity (ft/sec)	Capacity (cfs)	Description					
_						(618)	Chast Flour					
	4.7	23	0.170	JU	0.08		Sheet Flow,					
	0.0	77	0.200	20	0.42		Woods: Dense underbrush n= 0.800 P2= 3.50"					
	9.8	//	0.300	JU	0.13		Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.50"					
	1.6	150	0.370	20	1.52							
	1.0	150	0.57	JU	1.52		Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps					
	1.3	526	0.095	50	6.52	32.61	Trap/Vee/Rect Channel Flow,					
	1.3	320	0.09	50	0.52	32.01	Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'					
							n= 0.050					
	1.8	550	0.060	20	4.98	16.59	Parabolic Channel,					
	1.0	550	0.000	50	┯.૭0	10.53	W=10.00' D=0.50' Area=3.3 sf Perim=10.1'					
							n= 0.035 High grass					
_	19.2	1,326	Total				11- 0.000 Filgit grado					
	13.4	1,320	i Uldi									

Printed 7/2/2014 Page 20

Subcatchment A105: A105

Printed 7/2/2014

Page 21


Summary for Subcatchment A106: A106

Runoff = 53.17 cfs @ 12.37 hrs, Volume= 6.226 af, Depth= 4.87"

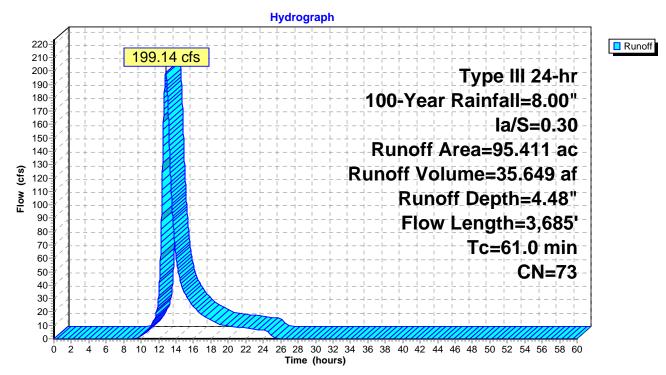
	Area	(ac)	10	N Desc	cription							
*	0.	013	9	8 Build	Building roof							
*	1.	232	9	8 Pave	Paved surface							
*	0.	200	9	6 Grav	Gravel surface							
*	0.000 98 Water Surface											
	0.000 39 >75% Grass cover, Good, HSG A 0.050 61 >75% Grass cover, Good, HSG B											
	HSG B											
	_	227	7			over, Good,						
		194	8			over, Good,	HSG D					
		097	3		ds, Good,							
		000	5		ds, Good,							
		706	7		ds, Good,							
0.619 77 Woods, Good, HSG D												
*		000	3		trap, HS0							
*		000	3		trap, HS0							
	0.000 30 Sand Trap, HSG C											
	15.338 76 Weighted Average											
	14.093 91.88% Pervious Are											
	1.245 8.12% li					ous Area						
	Тс	Leng	ıth	Slope	Velocity	Capacity	Description					
	(min)	(fee	•	(ft/ft)	(ft/sec)	(cfs)	Description					
_	16.0		00	0.1500	0.10	(013)	Sheet Flow.					
	16.0	11	UU	0.1500	0.10		Woods: Dense underbrush n= 0.800 P2= 3.50"					
	10.1	50	00	0.1100	0.83		Shallow Concentrated Flow,					
	10.1	3(00	0.1100	0.03		Forest w/Heavy Litter Kv= 2.5 fps					
	0.6	60	60	0.3000	17.87	321.67	Trap/Vee/Rect Channel Flow,					
	0.0	0.	00	0.0000	17.07	021.07	Bot.W=3.00' D=2.00' Z= 3.0 '/' Top.W=15.00'					
							n= 0.050					
	26.7	1,26	60	Total								

Printed 7/2/2014 Page 22

Subcatchment A106: A106

Printed 7/2/2014

Page 23


Summary for Subcatchment A107: A107

Runoff = 199.14 cfs @ 12.82 hrs, Volume= 35.649 af, Depth= 4.48"

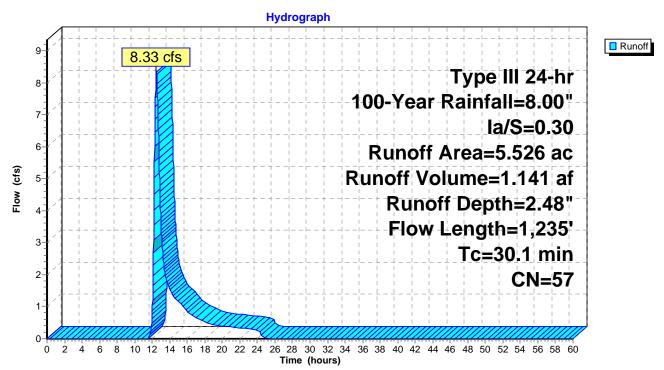
	Area	(ac)	CN	Desc	ription					
*	0.	392	98	Build	ling roof					
*	1.	725	98	Pave	ed surface					
*	0.	071	96	Grav	el surface					
*	0.	129	98	Wate	er Surface					
	0.	000	39	>75%	>75% Grass cover, Good, HSG A					
	13.	413	61	>75% Grass cover, Good, HSG B						
	9.311 74 >75% Grass cover						, HSG C			
		029	80			over, Good	, HSG D			
		000	30		ds, Good,					
		871	55		ds, Good,					
		853	70		ds, Good,					
		617	77		ds, Good,					
*		000	30		trap, HS0					
*		000	30		trap, HS0					
		000	30 73		d Trap, HS Inted Aver					
	95.									
		165			97.65% Pervious Area					
	2.	246		2.35	% Impervi	ous Area				
	Тс	Length		lope	Velocity	Capacity	Description			
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	Description			
_	20.5	100		0800	0.08	(013)	Sheet Flow,			
	20.5	100	0.0	JOUU	0.06		Woods: Dense underbrush n= 0.800 P2= 3.50"			
	3.7	230	0 1	1700	1.03		Shallow Concentrated Flow,			
	5.7	230	0.	1700	1.03		Forest w/Heavy Litter Kv= 2.5 fps			
	15.0	450	٠ ، ،	0400	0.50		Shallow Concentrated Flow,			
	13.0	400	0.0	7400	0.50		Forest w/Heavy Litter Kv= 2.5 fps			
	18.0	1,210	0.0	2000	1.12		Shallow Concentrated Flow,			
	10.0	1,210	0.2	2000	1.12		Forest w/Heavy Litter Kv= 2.5 fps			
	2.3	1,050	0 1	1300	7.68	25.61	Parabolic Channel,			
	2.0	1,000	, 0.	1000	7.00	20.01	W=5.00' D=1.00' Area=3.3 sf Perim=5.5' n= 0.050			
	1.5	645	5 0 1	1100	7.07	23.56	Parabolic Channel,			
		0.10				20.00	W=5.00' D=1.00' Area=3.3 sf Perim=5.5' n= 0.050			
	61.0	3,685	То	tal						
	51.5	0,000	, , ,	ta:						

Printed 7/2/2014 Page 24

Subcatchment A107: A107

Printed 7/2/2014

Page 25


Summary for Subcatchment A108: A108

Runoff = 8.33 cfs @ 12.48 hrs, Volume= 1.141 af, Depth= 2.48"

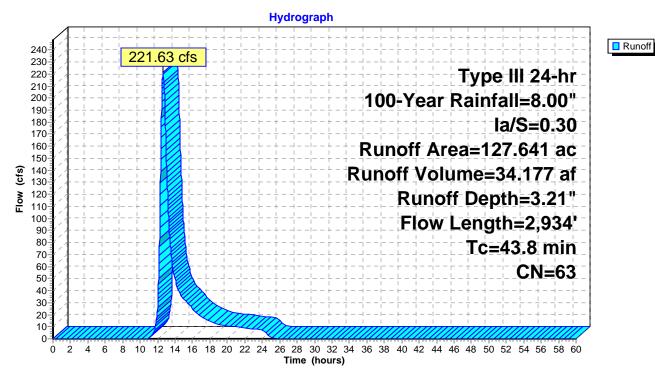
	Area	(ac)	CN	l Desc	cription					
*	* 0.040 98 Building roof									
*	0.000 96 Paved Surface									
*	0.049 96 Gravel surface 0.088 98 Water Surface									
*										
		000	39			over, Good,				
		629	61			over, Good,				
		000	74			over, Good,				
		000	80			over, Good,	HSG D			
		000	30		ds, Good,					
		720	55		ds, Good,					
		000	70		ds, Good,					
		000	77		ds, Good,					
*		000	30		Sand trap, HSG A					
*		000	30		trap, HS0					
* 0.000 30 Sand Trap, HSG C										
	5.526 57 Weighted Average									
	5.398 97.68% Pervious Area									
	0.128			2.32	% Impervi	ous Area				
	т.	1	41	01	Malaalt.	0	Description			
	Tc	Leng		Slope	Velocity	Capacity	Description			
_	(min)	(fe		(ft/ft)	(ft/sec)	(cfs)	OL 4 EL			
	14.2	1	00	0.2000	0.12		Sheet Flow,			
	40.7	0	- 0	0.0500	4.05		Woods: Dense underbrush n= 0.800 P2= 3.50"			
	12.7	9	50	0.2500	1.25		Shallow Concentrated Flow,			
	4.4		0.5	0.000	4.07		Forest w/Heavy Litter Kv= 2.5 fps			
	1.1	•	85	0.2600	1.27		Shallow Concentrated Flow,			
	2.4	4	00	0.4000	0.70		Forest w/Heavy Litter Kv= 2.5 fps			
	2.1	11	00	0.1000	0.79		Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps			
_	20.4	4.0	25	Tatal			Totest willeavy Litter RV= 2.3 1ps			
	30.1	1,2	პ 5	Total						

Printed 7/2/2014 Page 26

Subcatchment A108: A108

Printed 7/2/2014

Page 27


Summary for Subcatchment B101: B101

Runoff = 221.63 cfs @ 12.64 hrs, Volume= 34.177 af, Depth= 3.21"

	Area	(ac) C	N Desc	cription						
*		`		·						
*				Paved surface						
*				Gravel surface						
*				Water Surface						
	29.			>75% Grass cover, Good, HSG A						
	0.	000 6		>75% Grass cover, Good, HSG B						
	22.	752 7		>75% Grass cover, Good, HSG C						
	0.	768 8		>75% Grass cover, Good, HSG D						
				Woods, Good, HSG A						
				ds, Good,						
				ds, Good,						
4				ds, Good,						
*				d trap, HS0						
*				d trap, HS						
_				d Trap, HS						
	127. 126.			ghted Aver 5% Pervio						
		955		% Pervio % Impervi						
	0.	955	0.75	76 IIIIpeivii	Jus Alea					
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	2 occupación				
	15.6	50	0.0400	0.05	,	Sheet Flow,				
						Woods: Dense underbrush n= 0.800 P2= 3.50"				
	8.2	50	0.2000	0.10		Sheet Flow,				
						Woods: Dense underbrush n= 0.800 P2= 3.50"				
	4.6	511	0.5600	1.87		Shallow Concentrated Flow,				
						Forest w/Heavy Litter Kv= 2.5 fps				
	6.9	524	0.2600	1.27		Shallow Concentrated Flow,				
		=00	0.4000	40.04	004 =0	Forest w/Heavy Litter Kv= 2.5 fps				
	0.7	506	0.1600	12.61	201.73	Trap/Vee/Rect Channel Flow,				
						Bot.W=2.00' D=2.00' Z= 3.0 '/' Top.W=14.00'				
	1.7	112	0.2000	1.12		n= 0.050				
	1.7	112	0.2000	1.12		Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps				
	2.5	355	0.1100	2.32		Shallow Concentrated Flow,				
	2.0	555	0.1100	2.02		Short Grass Pasture Kv= 7.0 fps				
	2.5	184	0.0300	1.21		Shallow Concentrated Flow,				
	5		2.0000			Short Grass Pasture Kv= 7.0 fps				
	1.1	642	0.0500	9.49	63.28	Parabolic Channel,				
						W=5.00' D=2.00' Area=6.7 sf Perim=6.7'				
_						n= 0.035 High grass				
	43.8	2,934	Total							

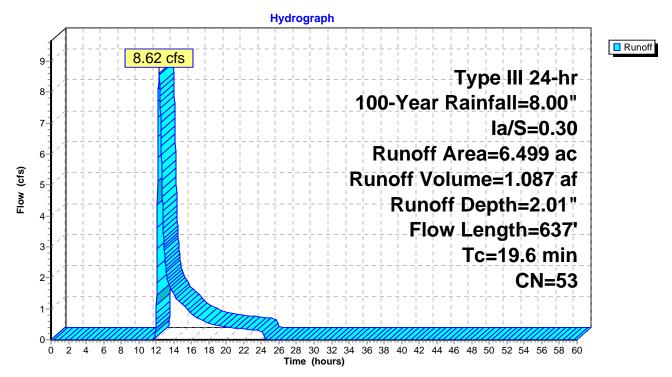
Printed 7/2/2014 Page 28

Subcatchment B101: B101

Printed 7/2/2014

Page 29

Summary for Subcatchment B102: B102


Runoff = 8.62 cfs @ 12.33 hrs, Volume= 1.087 af, Depth= 2.01"

	Area (ac) CN			N Desc	cription						
*	0.	000	98	Build	ling roof						
*	0.	170									
*	0.290 96 Gravel surface										
*	* 0.000 98 Water Surface										
	3.	039	39	>75%	% Grass co	over, Good,	HSG A				
	0.	000	61	l >75%	% Grass co	over, Good,	HSG B				
	2.	097	74	4 >75%	% Grass co	over, Good,	HSG C				
	0.	000	80	>75%	% Grass co	over, Good,	HSG D				
	0.	839	30) Woo	ds, Good,	HSG A					
	0.	000	55		ds, Good,						
		000	70		ds, Good,						
		000	77		Woods, Good, HSG D						
*		000	30		trap, HS0						
*		000	30		trap, HS0						
*		064	30		d Trap, HS						
		499	53	_	ghted Aver	0					
		329			8% Pervio						
	0.170		0 2		% Impervi	ous Area					
	_			01							
	Tc	Leng		Slope	Velocity	Capacity	Description				
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)					
	14.5	10	00	0.0500	0.11		Sheet Flow,				
							Grass: Bermuda n= 0.410 P2= 3.50"				
	3.8	45	57	0.0830	2.02		Shallow Concentrated Flow,				
	4.0			0.4750	4.05		Short Grass Pasture Kv= 7.0 fps				
	1.3	8	30	0.1750	1.05		Shallow Concentrated Flow,				
							Forest w/Heavy Litter Kv= 2.5 fps				
	19.6	63	37	Total							

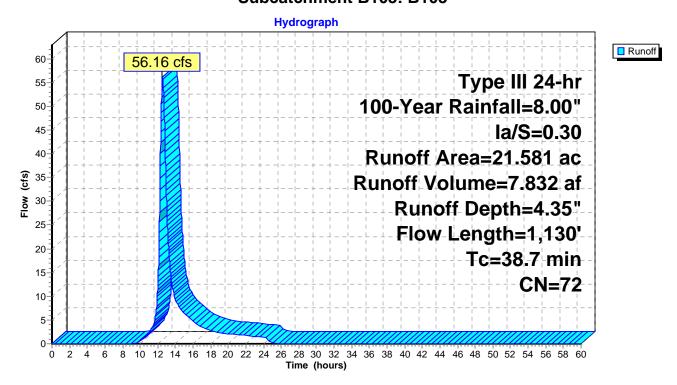
Printed 7/2/2014

Page 30

Subcatchment B102: B102

Printed 7/2/2014

Page 31


Summary for Subcatchment B103: B103

Runoff = 56.16 cfs @ 12.53 hrs, Volume= 7.832 af, Depth= 4.35"

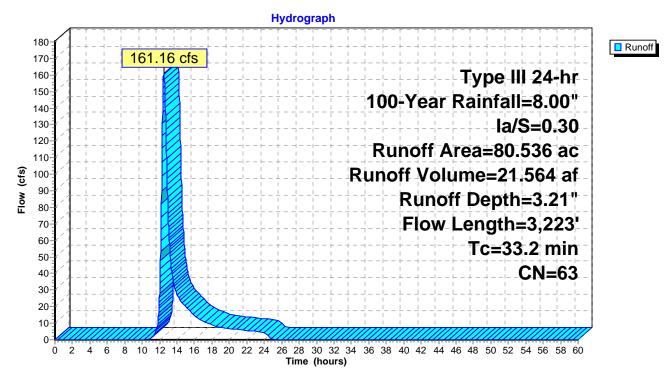
	Area	(ac)	CI	N Desc	cription						
*	0.	000	9	98 Building roof							
*	0.	550	9	8 Pave	Paved surface						
*	0.	039	9	6 Grav	Gravel surface						
*	2.	025	9	8 Wate	er Surface						
	3.	869	3			over, Good,					
	0.	000	6	1 >75%	% Grass co	over, Good,	HSG B				
		689	7			over, Good,					
		522	8			over, Good,	HSG D				
		000	3		ds, Good,						
		000	5		ds, Good,						
		459	7		ds, Good,						
		399	7		ds, Good,						
*		000	3		trap, HS0						
*		000	3		trap, HS0						
		029	3		d Trap, HS						
		581	7		hted Aver	•					
		006			7% Pervio						
	2.	575		11.9	3% Imperv	vious Area					
	Тс	Leng	ath	Slope	Velocity	Capacity	Description				
	(min)	•	et)	(ft/ft)	(ft/sec)	(cfs)	Bosonpasin				
	30.4		00	0.0300	0.05	(0.0)	Sheet Flow,				
	00.1	•		0.0000	0.00		Woods: Dense underbrush n= 0.800 P2= 3.50"				
	6.3	7	' 00	0.5500	1.85		Shallow Concentrated Flow,				
	0.0	•		0.000			Forest w/Heavy Litter Kv= 2.5 fps				
	1.6	2	280	0.1700	2.89		Shallow Concentrated Flow,				
		_					Short Grass Pasture Kv= 7.0 fps				
	0.4		50	0.7600	2.18		Shallow Concentrated Flow,				
							Forest w/Heavy Litter Kv= 2.5 fps				
	38.7	1,1	30	Total			•				

Printed 7/2/2014 Page 32

Subcatchment B103: B103

Printed 7/2/2014

Page 33


Summary for Subcatchment B104: B104

Runoff = 161.16 cfs @ 12.50 hrs, Volume= 21.564 af, Depth= 3.21"

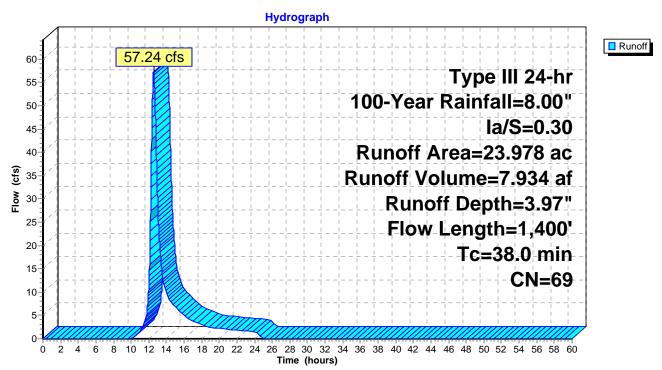
	Area	(ac)	CN	Desc	ription						
*	0.	411	98	Build	ling roof						
*											
*	1.	201	201 96 Gravel surface								
*	* 5.280 98 Water Surface										
	29.	, HSG A									
	0.000 61 >75% Grass cover, Good, HSG B										
		742	74			over, Good,					
		000	80			over, Good,	, HSG D				
		144	30		ds, Good,						
		000	55		ds, Good,						
		770	70		ds, Good,						
4		252	77		ds, Good,						
*		185	30		trap, HS0						
*		000	30		trap, HS0						
<u> </u>		143	30		d Trap, HS						
		536	63		hted Aver						
		705			5% Pervio						
	10.	831		13.4	5% imperv	rious Area					
	Тс	Lengt	th	Slope	Velocity	Capacity	Description				
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	2 000 · p 110 ·				
_	9.9	10		0.1300	0.17	(/	Sheet Flow,				
	0.0				• • • • • • • • • • • • • • • • • • • •		Grass: Bermuda n= 0.410 P2= 3.50"				
	7.3	1,15	io (0.1400	2.62		Shallow Concentrated Flow,				
							Short Grass Pasture Kv= 7.0 fps				
	0.6	13	30 (0.0300	3.52		Shallow Concentrated Flow,				
							Paved Kv= 20.3 fps				
	15.4	1,84	13		2.00		Direct Entry, Pipe Flow				
	33.2	3,22	23	Γotal							

Printed 7/2/2014 Page 34

Subcatchment B104: B104

Printed 7/2/2014

Page 35


Summary for Subcatchment B105: B105

Runoff = 57.24 cfs @ 12.54 hrs, Volume= 7.934 af, Depth= 3.97"

	Area	(ac)	CI	N Desc	cription								
*	0.	000	9	8 Build	ding roof								
*	0.:	248	9	8 Pave	ed surface								
*	0.	181	9	6 Gra√	Gravel surface								
*	0.	458	9	8 Wate	Vater Surface								
	5.	222	3			over, Good,							
		000	6	1 >759	% Grass co	over, Good,	HSG B						
		132	7			over, Good,							
	_	513	8			over, Good,	HSG D						
		000	3		ds, Good,								
		000	5		ds, Good,								
		204	7		ds, Good,								
		982	7		ds, Good,								
*		038	3		d trap, HS0								
*		000	3		d trap, HS0								
		000	3		d Trap, HS								
		978	6		ghted Aver	•							
		272			6% Pervio								
	0.	706		2.94	% Impervi	ous Area							
	Тс	Leng	ath	Slope	Velocity	Capacity	Description						
	(min)	•	et)	(ft/ft)	(ft/sec)	(cfs)							
	27.1		00	0.0400	0.06	, ,	Sheet Flow,						
		-					Woods: Dense underbrush n= 0.800 P2= 3.50"						
	6.5	6	98	0.5200	1.80		Shallow Concentrated Flow,						
							Forest w/Heavy Litter Kv= 2.5 fps						
	1.8	3	35	0.1900	3.05		Shallow Concentrated Flow,						
							Short Grass Pasture Kv= 7.0 fps						
	2.6	2	267	0.0600	1.71		Shallow Concentrated Flow,						
							Short Grass Pasture Kv= 7.0 fps						
	38.0	1,4	00	Total									

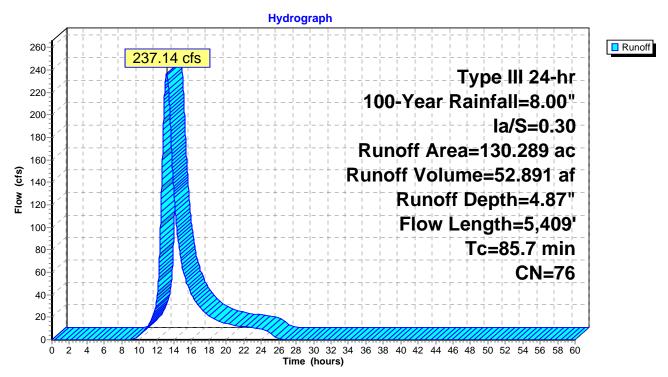
Printed 7/2/2014 Page 36

Subcatchment B105: B105

Printed 7/2/2014

Page 37

Summary for Subcatchment B106: B106


Runoff = 237.14 cfs @ 13.14 hrs, Volume= 52.891 af, Depth= 4.87"

	Area	(ac)	CN De	scription								
*	0.	025	98 Bu	ilding roof								
*		905		Paved surface								
*		933		Gravel surface								
*	0.	0.153 98 Water Surface										
	0.	907	39 >7	5% Grass c	over, Good	, HSG A						
0.594 61 >75% Grass cover, Good, HSG B												
		921		5% Grass c	,	,						
		396		5% Grass c	,	, HSG D						
		745		ods, Good,								
		000		ods, Good,								
		966		ods, Good,								
		720		ods, Good,								
*		024		nd trap, HS								
*		000		nd trap, HS								
_	<u>* 0.000 30 Sand Trap, HSG C</u> 130.289 76 Weighted Average											
	129.			.17% Pervio								
	_	083		33% Impervi								
	1.	003	0.0	o 70 iiiipei vi	ous Alea							
	Tc	Length	Slope	e Velocity	Capacity	Description						
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
	27.1	100	0.040	0.06		Sheet Flow,						
						Woods: Dense underbrush n= 0.800 P2= 3.50"						
	34.3	1,838	0.127	0.89		Shallow Concentrated Flow,						
	40.0	000	0.464			Forest w/Heavy Litter Kv= 2.5 fps						
	19.8	960	0.104	0.81		Shallow Concentrated Flow,						
	4.5	0.544	0.007	0.00	440.75	Forest w/Heavy Litter Kv= 2.5 fps						
	4.5	2,511	0.087	9.30	148.75	Trap/Vee/Rect Channel Flow,						
						Bot.W=2.00' D=2.00' Z= 3.0 '/' Top.W=14.00' n= 0.050						
_	0F 7	F 400	Total			11- 0.000						
	85.7	5,409	rotal									

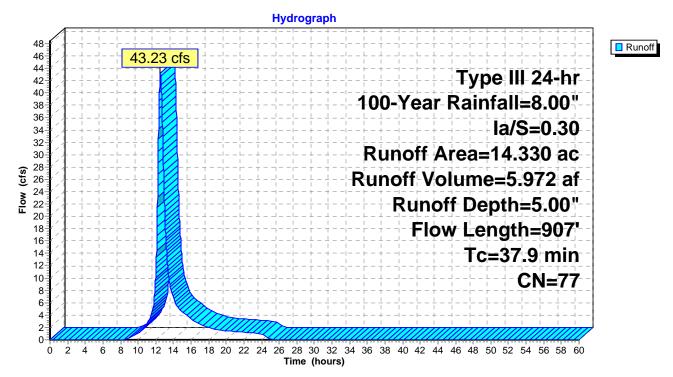
Printed 7/2/2014

Page 38

Subcatchment B106: B106

Printed 7/2/2014

Page 39


Summary for Subcatchment B107: B107

Runoff 43.23 cfs @ 12.51 hrs, Volume= 5.972 af, Depth= 5.00"

	Area	(ac)	CN	Desc	ription									
*	0.	000	98	Build	ing roof									
*	0.	000	98	Pave	Paved surface									
*	0.	106	96	Grav	Gravel surface									
*	0.	000	98	Wate	/ater Surface									
	0.	000	39	>75%	>75% Grass cover, Good, HSG A									
	0.	000	61											
	0.	000	74	>75%	√ Grass co √	over, Good,	, HSG C							
	0.	301	80	>75%	√ Grass co √	over, Good,	, HSG D							
	0.	000	30		ds, Good,									
	0.	000	55	Woo	ds, Good,	HSG B								
	0.	000	70		ds, Good,									
	_	923	77		ds, Good,									
*		000	30		l trap, HS0									
*		000	30		trap, HS0									
*		000	30		l Trap, HS									
		330	77	_	jhted Aver									
	14.	330		100.0	00% Pervi	ous Area								
	Тс	Leng		Slope	Velocity	Capacity	Description							
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)								
	21.7	10	00 0	0.0700	0.08		Sheet Flow,							
							Woods: Dense underbrush n= 0.800 P2= 3.50"							
	5.4	24	45 (0.0900	0.75		Shallow Concentrated Flow,							
							Forest w/Heavy Litter Kv= 2.5 fps							
	10.8	56	62 (0.1200	0.87		Shallow Concentrated Flow,							
_							Forest w/Heavy Litter Kv= 2.5 fps							
	37.9	90	7 7	Γotal										

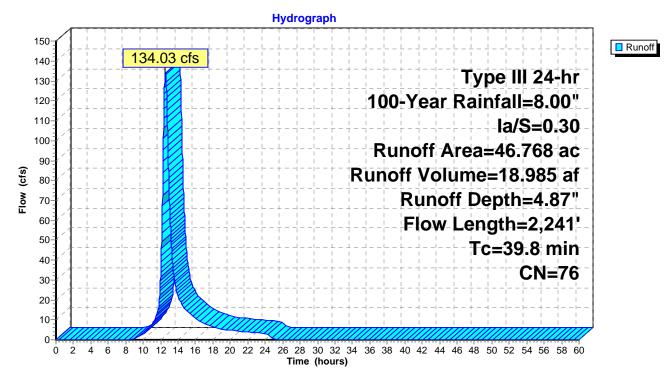
Printed 7/2/2014 Page 40

Subcatchment B107: B107

Printed 7/2/2014

Page 41

Summary for Subcatchment B108: B108


Runoff = 134.03 cfs @ 12.54 hrs, Volume= 18.985 af, Depth= 4.87"

	Area	(ac)	CN	Desc	cription							
*	0.	000	98	Build	ling roof							
*	0.	499	98		aved surface							
*		098	96		Gravel surface							
*		000	98	Wate	er Surface							
		000	39			over, Good,						
		000	61			over, Good						
		546	74			over, Good,						
		657	80			over, Good	, HSG D					
		000	30		ds, Good,							
		000	55		ds, Good,							
		391	70		ds, Good,							
		437	77		ds, Good,							
*		000	30		trap, HS0							
*		000	30		trap, HS0							
*		140	30		d Trap, HS							
		768	76		hted Aver							
		269			3% Pervio							
	0.	499		1.079	% Impervi	ous Area						
	То	Longth		Slope	\/olooity	Conneity	Description					
	Tc (min)	Length (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
_		•				(613)	Chast Flour					
	18.8	100	0.	1000	0.09		Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.50"					
	3.5	270		2590	1.27							
	3.5	2/(0.,	2590	1.27		Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps					
	1.8	120) O	2000	1.12		Shallow Concentrated Flow,					
	1.0	120	0.4	2000	1.12		Forest w/Heavy Litter Kv= 2.5 fps					
	10.9	1,071	0	4300	1.64		Shallow Concentrated Flow,					
	10.9	1,07	0.4	4300	1.04		Forest w/Heavy Litter Kv= 2.5 fps					
	3.2	490	0	1300	2.52		Shallow Concentrated Flow,					
	J.Z	730	, 0.	1300	2.02		Short Grass Pasture Kv= 7.0 fps					
	1.6	190)		2.00		Direct Entry, Pipe Flow					
	39.8	2,241		otal								

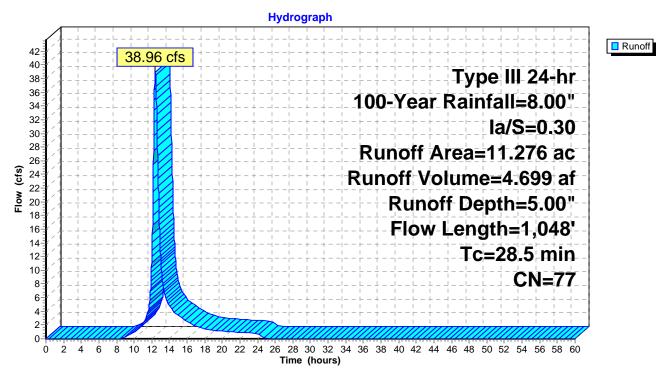
Printed 7/2/2014

Page 42

Subcatchment B108: B108

Printed 7/2/2014

Page 43


Summary for Subcatchment B109: B109

Runoff = 38.96 cfs @ 12.39 hrs, Volume= 4.699 af, Depth= 5.00"

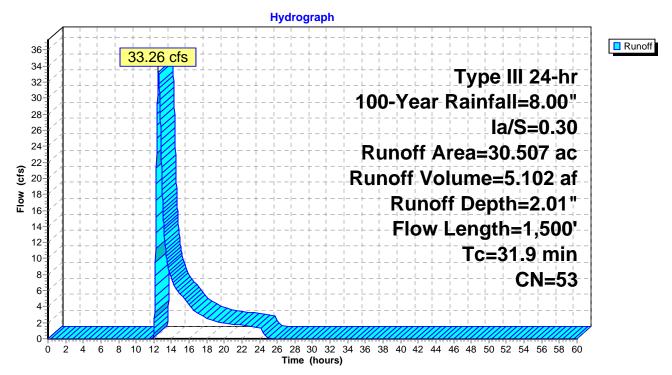
	Area	(ac)	CN	Desc	cription						
*	0.	000	98	Build	ling roof						
*	0.	004	98	Pave	ed surface						
*	0.	000	96	Grav	Gravel surface						
*	0.000 98 Water Surface										
	0.000 39 >75% Grass cover, Good, HSG A										
	0.000 61 >75% Grass cover, Good, HSG B										
		045	74			over, Good,					
		000	80			over, Good,	, HSG D				
		000	30		ds, Good,						
		000	55		ds, Good,						
		299	70		ds, Good,						
		928	77		ds, Good,						
* 0.000 30 Sand trap, HSG A											
*		000	30		trap, HS0						
<u>~</u>		000	30		d Trap, HS						
		276	77	_	hted Aver	•					
		272			6% Pervio						
	0.	004		0.04	% Impervi	ous Area					
	Тс	Length	n S	Slope	Velocity	Capacity	Description				
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	'				
	18.8	100	0.1	1000	0.09		Sheet Flow,				
							Woods: Dense underbrush n= 0.800 P2= 3.50"				
	2.8	395	5 0.8	8550	2.31		Shallow Concentrated Flow,				
							Forest w/Heavy Litter Kv= 2.5 fps				
	2.6	265	5 0.4	4500	1.68		Shallow Concentrated Flow,				
							Forest w/Heavy Litter Kv= 2.5 fps				
	4.3	288	3 0.2	2010	1.12		Shallow Concentrated Flow,				
_							Forest w/Heavy Litter Kv= 2.5 fps				
	28.5	1,048	3 To	otal							

Printed 7/2/2014 Page 44

Subcatchment B109: B109

Printed 7/2/2014

Page 45


Summary for Subcatchment C101: C101

Runoff = 33.26 cfs @ 12.53 hrs, Volume= 5.102 af, Depth= 2.01"

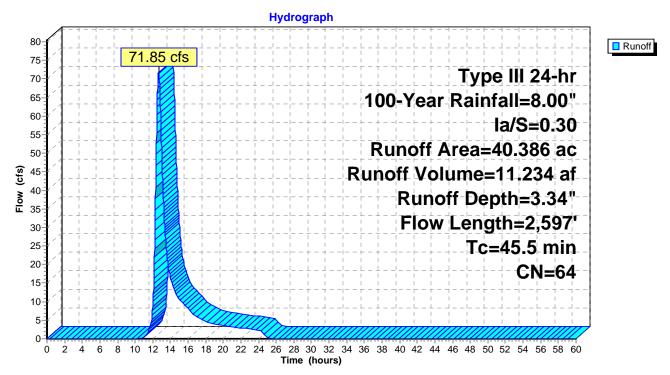
	Area	(ac)	CN	Desc	ription							
*	0.	000	98	Build	ling roof							
*	1.	350	98	Pave	Paved surface							
*	0.	425	96	Grav	Gravel surface							
*	0.	000	98	Wate	Vater Surface							
*	0.	046	98	Rock	COutcrop/l	_edge						
	15.	000	39			over, Good,						
	0.	000	61			over, Good,						
		955	74			over, Good,						
		000	80			over, Good,	, HSG D					
		210	30		ds, Good,							
		000	55		ds, Good,							
		521	70		ds, Good,							
		000	77		ds, Good,							
*		000	30		trap, HS0							
*		000	30		trap, HS0							
_		000	30		l Trap, HS							
		507	53		hted Aver	•						
		111			2% Pervio							
	1.	396		4.58	% Impervio	ous Area						
	Тс	Lengt	h	Slope	Velocity	Capacity	Description					
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Decemplion					
	21.7	10		.0700	0.08	7	Sheet Flow,					
							Woods: Dense underbrush n= 0.800 P2= 3.50"					
	5.6	38	5 0	.2100	1.15		Shallow Concentrated Flow,					
					_		Forest w/Heavy Litter Kv= 2.5 fps					
	2.7	59	5 0	.0300	3.66	18.32	Trap/Vee/Rect Channel Flow,					
							Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'					
							n= 0.050					
	1.9	42	0 0	.0290	3.60	18.01	Trap/Vee/Rect Channel Flow,					
							Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'					
							n= 0.050					
	31.9	1,50	0 T	otal								

Printed 7/2/2014 Page 46

Subcatchment C101: C101

Printed 7/2/2014

Page 47


Summary for Subcatchment C102: C102

Runoff = 71.85 cfs @ 12.67 hrs, Volume= 11.234 af, Depth= 3.34"

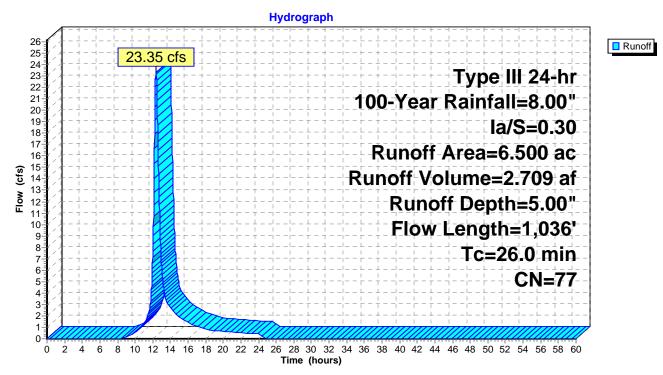
_	Area	(ac) (ON Des	cription				
*	0.	000	98 Buil	ding roof				
*				ed surface				
*	0.	618	96 Gra	vel surface				
*	0.	832		er Surface				
*				k Outcrop/				
					over, Good			
					over, Good	,		
					over, Good			
					over, Good	, HSG D		
				ods, Good,				
				ds, Good,				
				ods, Good,				
				ods, Good,				
*				d trap, HS				
*				d trap, HS				
_				d Trap, HS				
				ghted Aver				
		573		1% Pervio				
	1.	813	4.49	% Impervi	ous Area			
	Tc	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	19.4	60	0.0330	0.05		Sheet Flow,		
						Woods: Dense underbrush n= 0.800 P2= 3.50"		
	9.0	40	0.1000	0.07		Sheet Flow,		
						Woods: Dense underbrush n= 0.800 P2= 3.50"		
	7.2	484	0.2000	1.12		Shallow Concentrated Flow,		
						Forest w/Heavy Litter Kv= 2.5 fps		
	6.8	700	0.4700	1.71		Shallow Concentrated Flow,		
						Forest w/Heavy Litter Kv= 2.5 fps		
	0.3	304	0.2700	16.38	262.05	Trap/Vee/Rect Channel Flow,		
						Bot.W=2.00' D=2.00' Z= 3.0 '/' Top.W=14.00'		
	4.0		0.4400		0= =0	n= 0.050		
	1.3	777	0.1100	9.86	65.70	Parabolic Channel,		
	4.5	000		0.54		W=5.00' D=2.00' Area=6.7 sf Perim=6.7' n= 0.050		
	1.5	232		2.54		Lake or Reservoir,		
_	45.5		—			Mean Depth= 0.20'		
	45.5	2,597	Total					

Printed 7/2/2014 Page 48

Subcatchment C102: C102

Printed 7/2/2014

Page 49


Summary for Subcatchment D101: D101

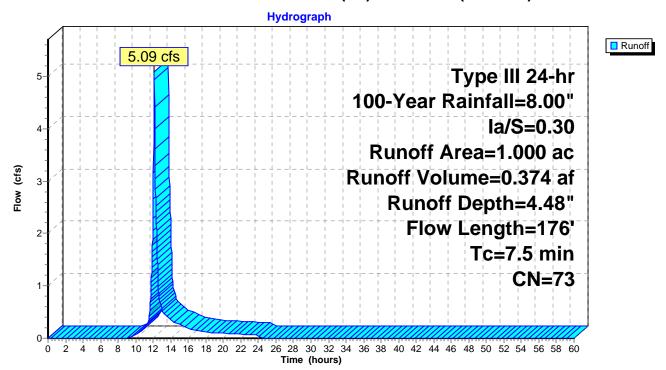
Runoff = 23.35 cfs @ 12.35 hrs, Volume= 2.709 af, Depth= 5.00"

	Area	(ac)	CN	Desc	cription									
*		0.000 98 Building roof												
*		000	98		aved surface									
*	0.	000	96	Grav	iravel surface									
*	0.	000	98	Wate	ater Surface									
*	0.	000	98	Rock	ock Outcrop/Ledge									
	0.000 39 >75% Grass cover, Good, HSG A													
	0.	000	61	>75%	% Grass co	over, Good,	HSG B							
	0.000 74 >75% Grass cover, Good, HSG C													
	0.	000	80	>75%	√ Grass co √	over, Good,	HSG D							
	0.	000	30		ds, Good,									
	0.	000	55		ds, Good,									
	_	000	70		ds, Good,									
		500	77		ds, Good,									
*		000	30		d trap, HS0									
*		000	30		trap, HS0									
<u>*</u>		000	30		d Trap, HS									
		500	77		ghted Aver									
	6.	500		100.	00% Pervi	ous Area								
	_			01										
	Tc	Lengt		Slope	Velocity	Capacity	Description							
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)								
	19.2	10	0 0	.0950	0.09		Sheet Flow,							
							Woods: Dense underbrush n= 0.800 P2= 3.50"							
	3.0	60	8 0	.4450	3.34		Shallow Concentrated Flow,							
	0.0	00		0.400	4.40		Woodland Kv= 5.0 fps							
	3.8		8 0	.0420	1.43		Shallow Concentrated Flow,							
		4.55					Short Grass Pasture Kv= 7.0 fps							
	26.0	1,03	6 T	otal										

Printed 7/2/2014 Page 50

Subcatchment D101: D101

Printed 7/2/2014 Page 51


Summary for Subcatchment Overlook (P1): Overlook (Phase 1)

Runoff = 5.09 cfs @ 12.11 hrs, Volume= 0.374 af, Depth= 4.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area	(ac) C	N Des	cription							
	0.	150	70 Woo	ds, Good,	HSG C						
	0.	850	74 >759	% Grass co	over, Good	, HSG C					
*	0.	000	39 Grav	el roads a	nd parking	, HSG C					
	0.000 98 Paved parking, HSG C										
	1.	000	73 Wei	ghted Aver	age						
	1.000 100.00% Pervious Area										
	Tc	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	2.3	20	0.2000	0.15		Sheet Flow, A to B					
						Woods: Light underbrush n= 0.400 P2= 3.50"					
	5.0	80	0.1600	0.27		Sheet Flow, B to C					
						Grass: Dense n= 0.240 P2= 3.50"					
	0.2	76	0.1570	6.38		Shallow Concentrated Flow, C to D					
_						Unpaved Kv= 16.1 fps					
	7.5	176	Total								

Subcatchment Overlook (P1): Overlook (Phase 1)

Printed 7/2/2014

Page 52

Summary for Reach A105R: Thru A101

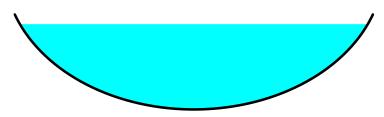
Inflow Area = 49.602 ac, 4.77% Impervious, Inflow Depth = 3.47" for 100-Year event

Inflow = 122.42 cfs @ 12.35 hrs, Volume= 14.325 af

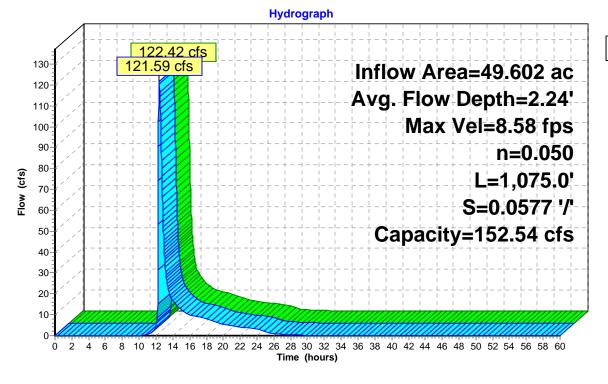
Outflow = 121.59 cfs @ 12.38 hrs, Volume= 14.325 af, Atten= 1%, Lag= 1.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

Max. Velocity= 8.58 fps, Min. Travel Time= 2.1 min Avg. Velocity = 1.65 fps, Avg. Travel Time= 10.9 min

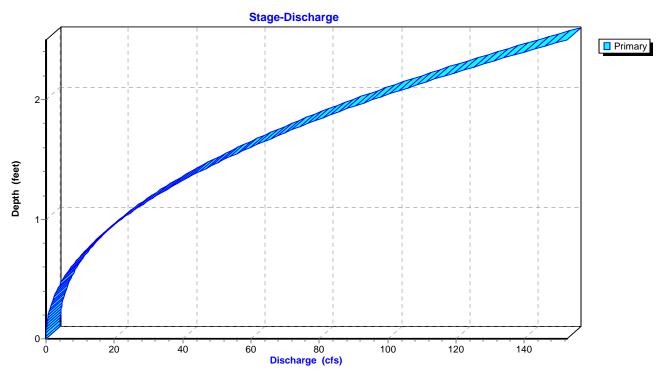

Peak Storage= 15,228 cf @ 12.38 hrs Average Depth at Peak Storage= 2.24

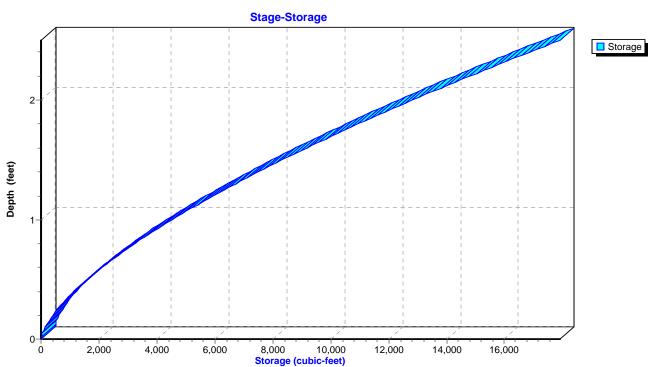
Bank-Full Depth= 2.50' Flow Area= 16.7 sf, Capacity= 152.54 cfs


10.00' x 2.50' deep Parabolic Channel, n= 0.050

Length= 1,075.0' Slope= 0.0577 '/'

Inlet Invert= 566.00', Outlet Invert= 504.00'


Reach A105R: Thru A101



Printed 7/2/2014 Page 53

Reach A105R: Thru A101

Reach A105R: Thru A101

Printed 7/2/2014

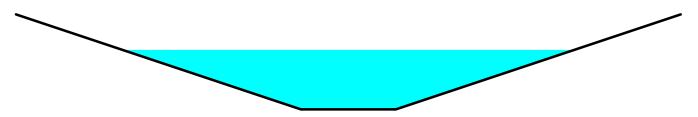
Page 54

Summary for Reach A106R: Thru A105

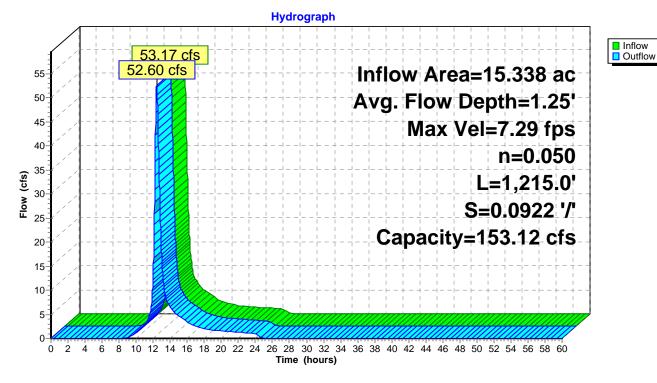
Inflow Area = 15.338 ac, 8.12% Impervious, Inflow Depth = 4.87" for 100-Year event

Inflow = 53.17 cfs @ 12.37 hrs, Volume= 6.226 af

Outflow = 52.60 cfs @ 12.41 hrs, Volume= 6.226 af, Atten= 1%, Lag= 2.1 min

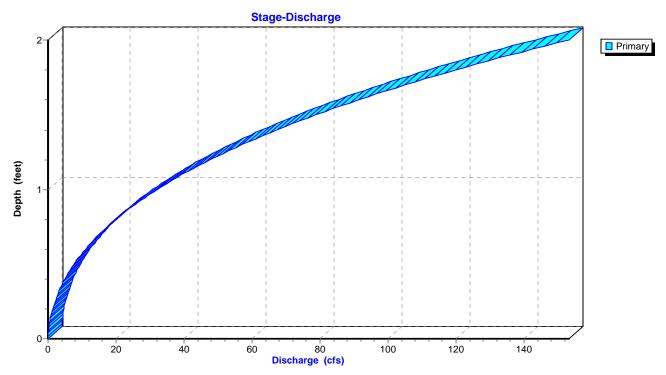

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

Max. Velocity= 7.29 fps, Min. Travel Time= 2.8 min Avg. Velocity = 2.71 fps, Avg. Travel Time= 7.5 min

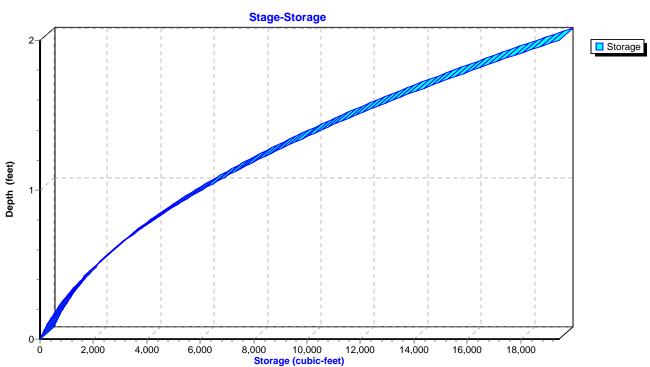

Peak Storage= 8,761 cf @ 12.41 hrs Average Depth at Peak Storage= 1.25'

Bank-Full Depth= 2.00' Flow Area= 16.0 sf, Capacity= 153.12 cfs

2.00' x 2.00' deep channel, n= 0.050 Side Slope Z-value= 3.0 '/' Top Width= 14.00' Length= 1,215.0' Slope= 0.0922 '/' Inlet Invert= 686.00', Outlet Invert= 574.00'



Reach A106R: Thru A105



Printed 7/2/2014 Page 55

Reach A106R: Thru A105

Reach A106R: Thru A105

29011.00 Existing OS

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 56

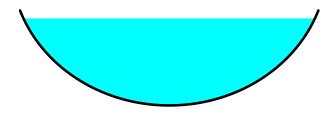
Summary for Reach A108R: Thru A101

Inflow Area = 100.937 ac, 2.35% Impervious, Inflow Depth = 4.37" for 100-Year event

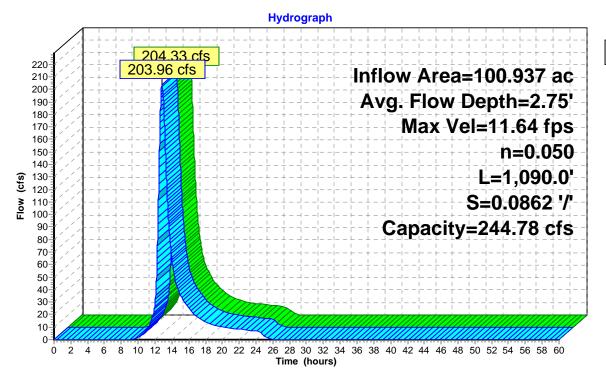
Inflow = 204.33 cfs @ 12.82 hrs, Volume= 36.790 af

Outflow = 203.96 cfs @ 12.84 hrs, Volume= 36.790 af, Atten= 0%, Lag= 1.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

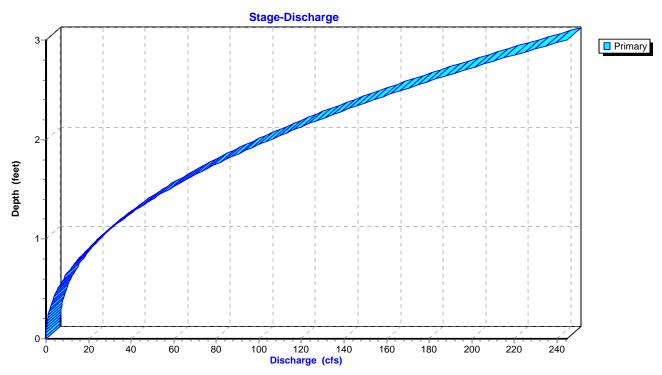

Max. Velocity= 11.64 fps, Min. Travel Time= 1.6 min Avg. Velocity = 4.55 fps, Avg. Travel Time= 4.0 min

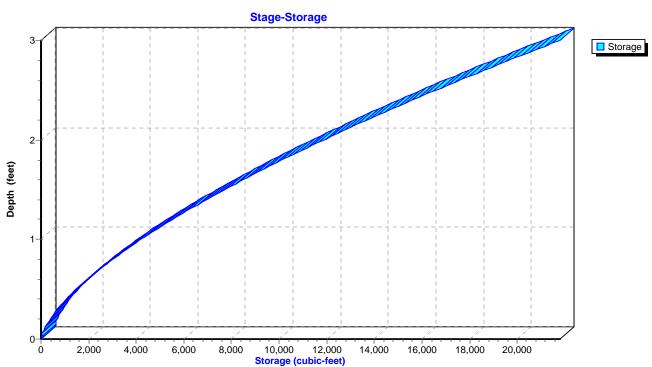
Peak Storage= 19,101 cf @ 12.84 hrs Average Depth at Peak Storage= 2.75'


Bank-Full Depth= 3.00' Flow Area= 20.0 sf, Capacity= 244.78 cfs

 $10.00' \times 3.00'$ deep Parabolic Channel, n= 0.050 Length= 1,090.0' Slope= 0.0862 '/'

Inlet Invert= 608.00', Outlet Invert= 514.00'


Reach A108R: Thru A101



Printed 7/2/2014 Page 57

Reach A108R: Thru A101

Reach A108R: Thru A101

Printed 7/2/2014

Page 58

Summary for Reach B102R: Thru B101

Inflow Area = 262.883 ac, 5.84% Impervious, Inflow Depth > 4.07" for 100-Year event

Inflow = 348.43 cfs @ 13.12 hrs, Volume= 89.057 af

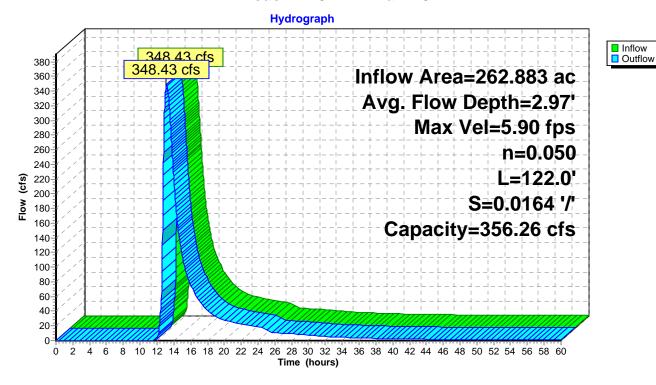
Outflow = 348.43 cfs @ 13.12 hrs, Volume= 89.055 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

Max. Velocity= 5.90 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.80 fps, Avg. Travel Time= 1.1 min

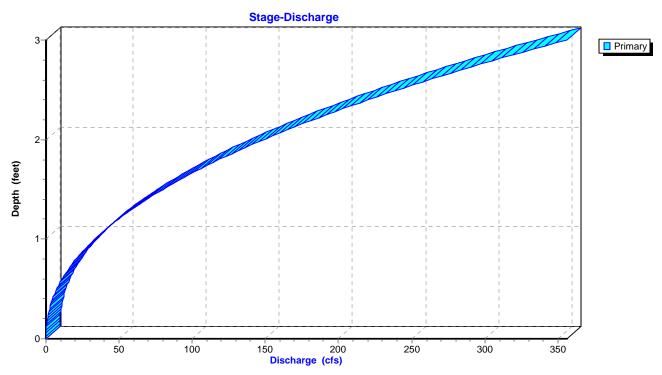
Peak Storage= 7,207 cf @ 13.12 hrs Average Depth at Peak Storage= 2.97'

Bank-Full Depth= 3.00' Flow Area= 60.0 sf, Capacity= 356.26 cfs

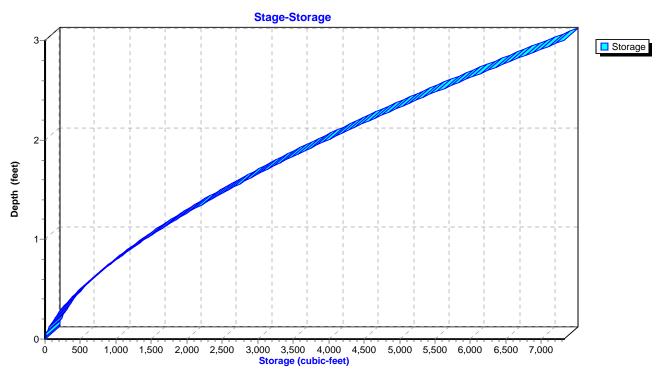

30.00' x 3.00' deep Parabolic Channel, n= 0.050

Length= 122.0' Slope= 0.0164 '/'

Inlet Invert= 492.00', Outlet Invert= 490.00'



Reach B102R: Thru B101



Printed 7/2/2014 Page 59

Reach B102R: Thru B101

Reach B102R: Thru B101

Printed 7/2/2014

Page 60

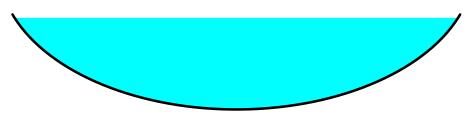
Summary for Reach B103R: Thru B102

Inflow Area = 256.384 ac, 5.93% Impervious, Inflow Depth > 4.12" for 100-Year event

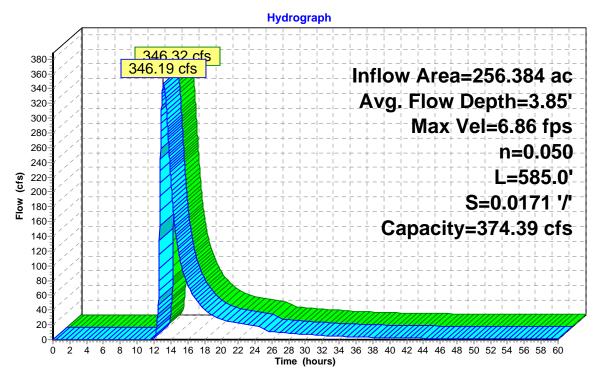
Inflow = 346.32 cfs @ 13.10 hrs, Volume= 87.980 af

Outflow = 346.19 cfs @ 13.12 hrs, Volume= 87.971 af, Atten= 0%, Lag= 1.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

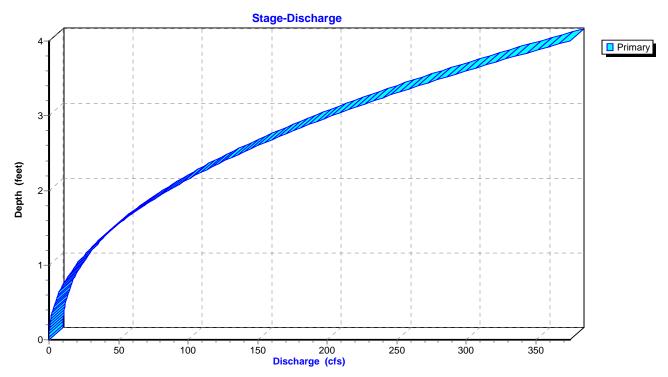

Max. Velocity= 6.86 fps, Min. Travel Time= 1.4 min Avg. Velocity = 2.13 fps, Avg. Travel Time= 4.6 min

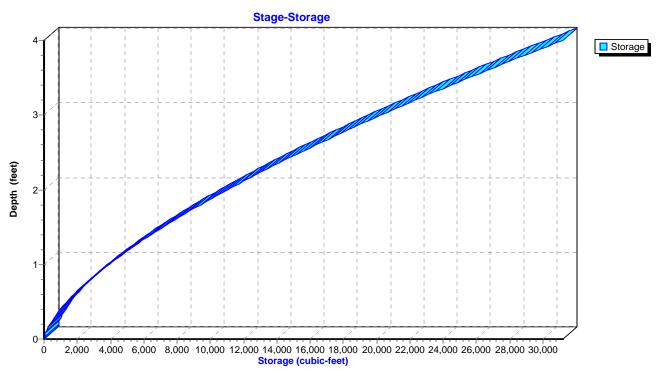
Peak Storage= 29,512 cf @ 13.12 hrs Average Depth at Peak Storage= 3.85' Bank-Full Depth= 4.00' Flow Area= 53.3 sf, Capacity= 374.39 cfs


20.00' x 4.00' deep Parabolic Channel, n= 0.050

Length= 585.0' Slope= 0.0171 '/'

Inlet Invert= 502.00', Outlet Invert= 492.00'


Reach B103R: Thru B102



Printed 7/2/2014 Page 61

Reach B103R: Thru B102

Reach B103R: Thru B102

Printed 7/2/2014

Page 62

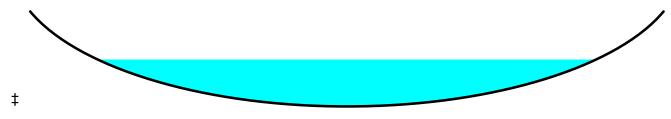
Summary for Reach B107R: Thru B108

Inflow Area = 14.330 ac, 0.00% Impervious, Inflow Depth = 4.77" for 100-Year event

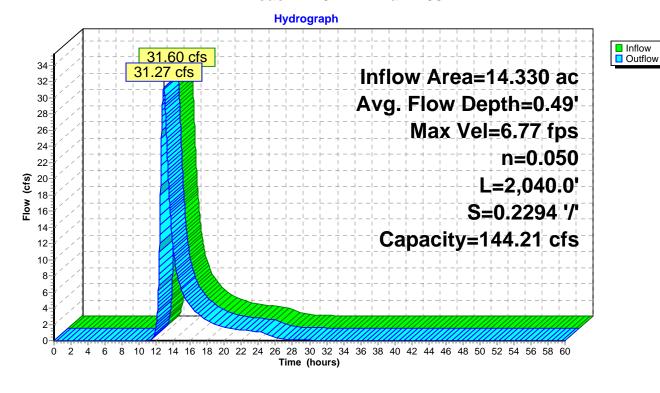
Inflow = 31.60 cfs @ 12.80 hrs, Volume= 5.696 af

Outflow = 31.27 cfs @ 12.87 hrs, Volume= 5.696 af, Atten= 1%, Lag= 3.9 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

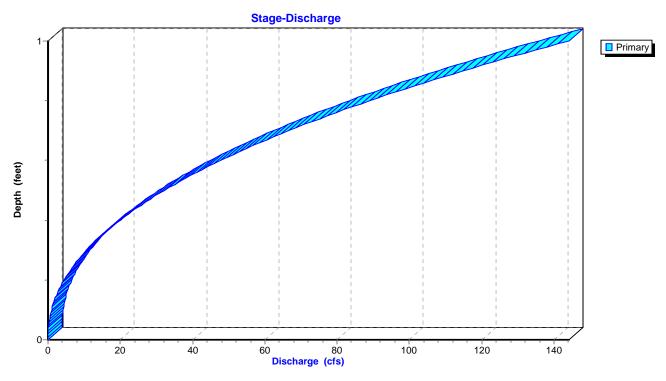

Max. Velocity= 6.77 fps, Min. Travel Time= 5.0 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 23.8 min

Peak Storage= 9,425 cf @ 12.87 hrs Average Depth at Peak Storage= 0.49'

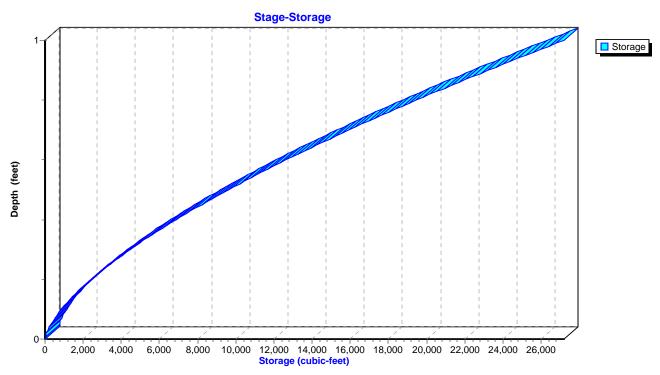

Bank-Full Depth= 1.00' Flow Area= 13.3 sf, Capacity= 144.21 cfs

20.00' x 1.00' deep Parabolic Channel, n= 0.050 Length= 2,040.0' Slope= 0.2294 '/'

Inlet Invert= 972.00', Outlet Invert= 504.00'



Reach B107R: Thru B108



Printed 7/2/2014 Page 63

Reach B107R: Thru B108

Reach B107R: Thru B108

Printed 7/2/2014

Page 64

Summary for Reach B108R: Thur 101

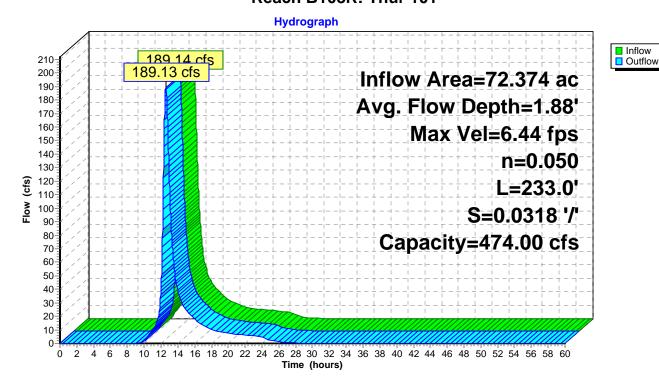
Inflow Area = 72.374 ac, 0.70% Impervious, Inflow Depth = 4.87" for 100-Year event

Inflow = 189.14 cfs @ 12.56 hrs, Volume= 29.356 af

Outflow = 189.13 cfs @ 12.57 hrs, Volume= 29.356 af, Atten= 0%, Lag= 0.4 min

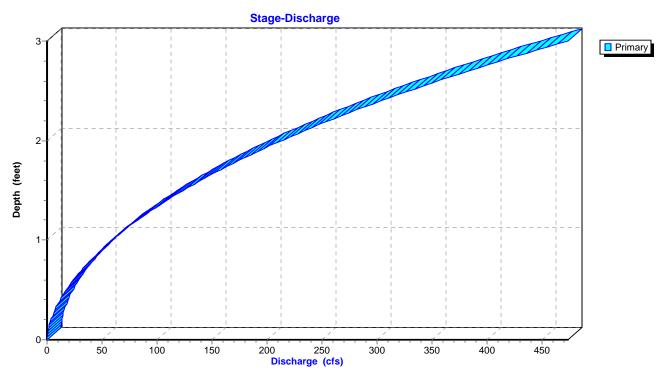
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

Max. Velocity= 6.44 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 3.2 min

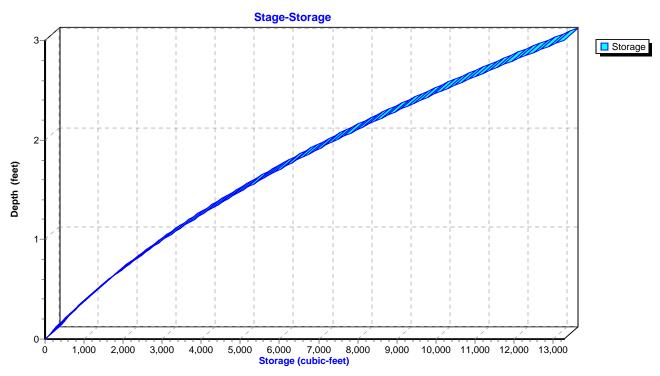

Peak Storage= 6,839 cf @ 12.57 hrs Average Depth at Peak Storage= 1.88'

Bank-Full Depth= 3.00' Flow Area= 57.0 sf, Capacity= 474.00 cfs

10.00' x 3.00' deep channel, n= 0.050 Side Slope Z-value= 3.0 '/' Top Width= 28.00' Length= 233.0' Slope= 0.0318 '/' Inlet Invert= 499.60', Outlet Invert= 492.20'



Reach B108R: Thur 101



Printed 7/2/2014 Page 65

Reach B108R: Thur 101

Reach B108R: Thur 101

Printed 7/2/2014

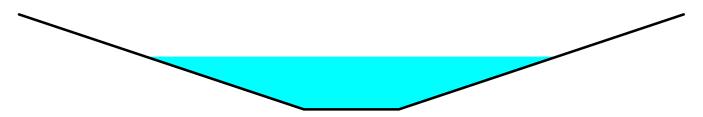
Page 66

Summary for Reach B109R: Thru B108

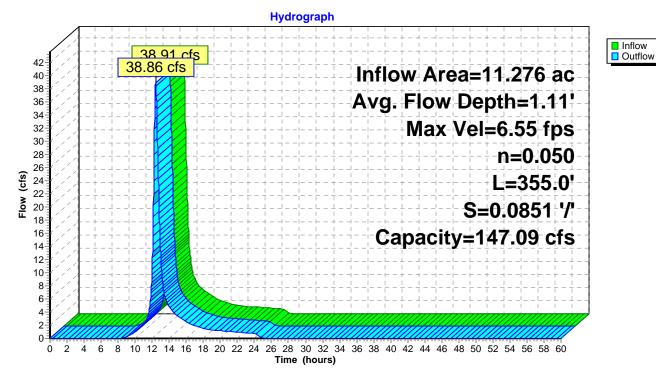
Inflow Area = 11.276 ac, 0.04% Impervious, Inflow Depth = 5.00" for 100-Year event

Inflow = 38.91 cfs @ 12.40 hrs, Volume= 4.699 af

Outflow = 38.86 cfs @ 12.41 hrs, Volume= 4.699 af, Atten= 0%, Lag= 0.7 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

Max. Velocity= 6.55 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.64 fps, Avg. Travel Time= 2.2 min

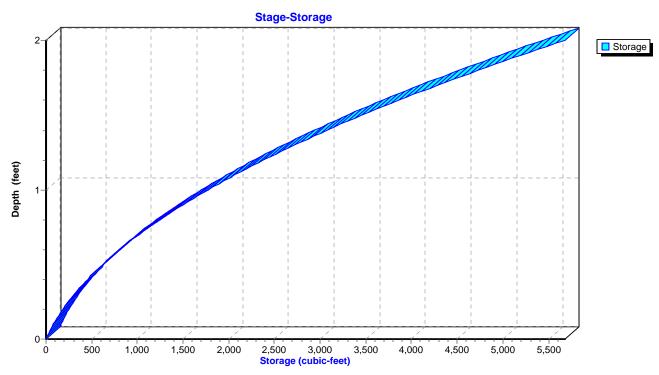

Peak Storage= 2,106 cf @ 12.41 hrs Average Depth at Peak Storage= 1.11'

Bank-Full Depth= 2.00' Flow Area= 16.0 sf, Capacity= 147.09 cfs

2.00' x 2.00' deep channel, n= 0.050 Side Slope Z-value= 3.0 '/' Top Width= 14.00' Length= 355.0' Slope= 0.0851 '/' Inlet Invert= 532.20', Outlet Invert= 502.00'



Reach B109R: Thru B108



Printed 7/2/2014 Page 67

Reach B109R: Thru B108

Reach B109R: Thru B108

Printed 7/2/2014

Page 68

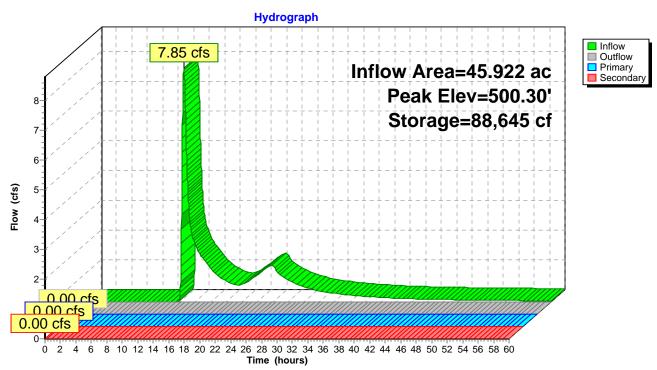
Summary for Pond 102A: Wetland B

Inflow Area = 45.922 ac. 9.71% Impervious, Inflow Depth > 0.53" for 100-Year event Inflow 7.85 cfs @ 12.52 hrs. Volume= 2.035 af 0.00 hrs, Volume= Outflow 0.00 cfs @ 0.000 af, Atten= 100%, Lag= 0.0 min 0.00 hrs, Volume= 0.000 af Primary 0.00 cfs @ Secondary = 0.000 af 0.00 cfs @ 0.00 hrs, Volume=

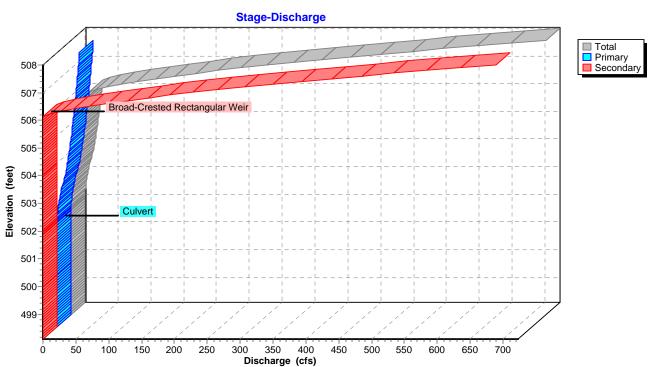
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 500.30' @ 60.00 hrs Surf.Area= 44,330 sf Storage= 88,645 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

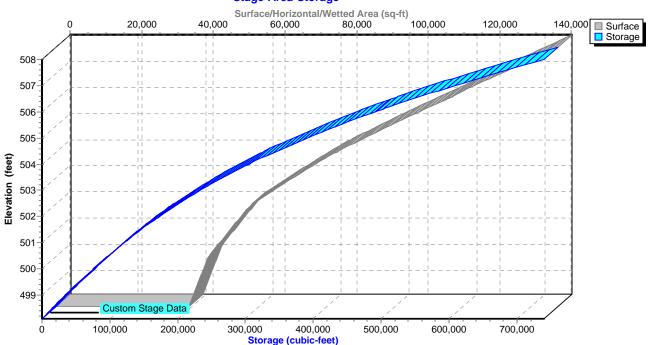

Volume	Invert	Avail.Sto	orage	Storage Description	n				
#1	498.10'	740,1	68 cf	Custom Stage Date	Custom Stage Data (Irregular)Listed below (Recalc)				
Elevation			Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>			
498.10	;	37,121	782.0	0	0	37,121			
500.00)	42,629	822.0	75,702	75,702	42,449			
502.00		54,696 1,	028.0	97,075	172,777 305,139 491,662	72,833			
504.00	,	78,374 1,	409.0	132,362		146,760			
506.00	10	08,988 1,	330.0	186,523		164,196			
508.00	14	40,171 1,	485.0	248,506	740,168	199,031			
Device F	Routing	Invert	Outl	et Devices					
#1 F	Primary	501.90'	24.0	" Round Culvert					
	,		_	0.0' RCP, square e	edge headwall. Ke	= 0.500			
# 0 (Pagandam,	lr n		Inlet / Outlet Invert= 501.90' / 500.90' S= 0.0125 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf 100.0' long x 20.0' breadth Broad-Crested Rectangular Weir					
#2 \$	Secondary	506.10'		d (feet) 0.20 0.40 (
				f. (English) 2.68 2.7					

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=498.10' (Free Discharge) 1=Culvert (Controls 0.00 cfs)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=498.10' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 7/2/2014 Page 69

Pond 102A: Wetland B



Pond 102A: Wetland B

Printed 7/2/2014 Page 70

Pond 102A: Wetland B

Printed 7/2/2014

Page 71

Summary for Pond 102B: 18" Culvert

[62] Hint: Exceeded Reach B103R OUTLET depth by 2.28' @ 27.24 hrs

Inflow Area = 262.883 ac, 5.84% Impervious, Inflow Depth > 4.07" for 100-Year event

Inflow = 348.44 cfs @ 13.12 hrs, Volume= 89.058 af

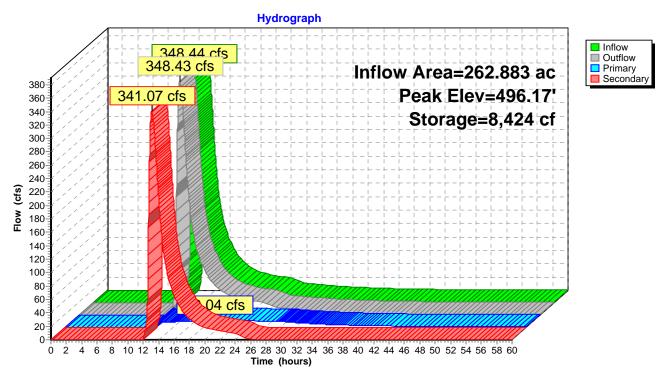
Outflow = 348.43 cfs @ 13.12 hrs, Volume= 89.057 af, Atten= 0%, Lag= 0.2 min

Primary = 10.04 cfs @ 19.57 hrs, Volume= 19.685 af Secondary = 341.07 cfs @ 13.12 hrs, Volume= 69.373 af

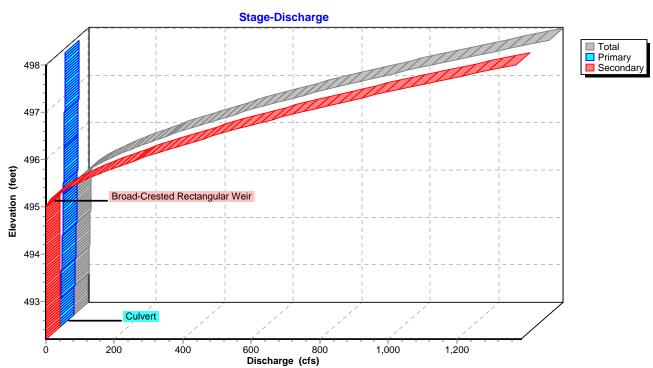
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 496.17' @ 13.12 hrs Surf.Area= 6,440 sf Storage= 8,424 cf

Plug-Flow detention time= 1.1 min calculated for 89.028 af (100% of inflow)

Center-of-Mass det. time= 1.1 min (1,055.6 - 1,054.5)

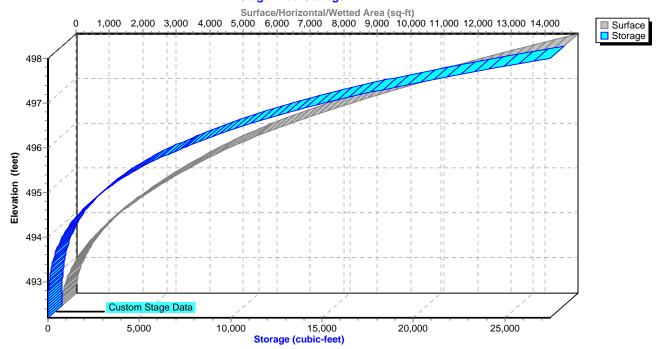

<u>Volume</u>	Inve	ert Avai	I.Storage	Storage Description	n		
#1	492.2	0' 2	27,470 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
492.2 496.0 498.0	00	0 5,819 14,990	0.0 521.0 910.0	0 7,371 20,099	0 7,371 27,470	21,623 65,944	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	492	L= 20 Inlet	" Round Culvert 0.0' CPP, projectin / Outlet Invert= 492 .025 Corrugated me	.20' / 491.10' S= 0	0.0550 '/' Cc= 0.900	
#2	Seconda	ry 495	.00' 100. Head	•	adth Broad-Creste 0.60 0.80 1.00 1.2	ed Rectangular Weir 20 1.40 1.60	

Primary OutFlow Max=10.04 cfs @ 19.57 hrs HW=495.18' TW=492.95' (Dynamic Tailwater) 1=Culvert (Inlet Controls 10.04 cfs @ 5.68 fps)


Secondary OutFlow Max=341.06 cfs @ 13.12 hrs HW=496.17' TW=494.97' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 341.06 cfs @ 2.91 fps)

Printed 7/2/2014 Page 72

Pond 102B: 18" Culvert


Pond 102B: 18" Culvert

Printed 7/2/2014

Page 73

Pond 102B: 18" Culvert

29011.00 Existing OS

Type III 24-hr 100-Year Rainfall=8.00", la/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 74

Summary for Pond 102C: Pond 102C

Inflow Area = 40.386 ac, 4.49% Impervious, Inflow Depth = 3.34" for 100-Year event

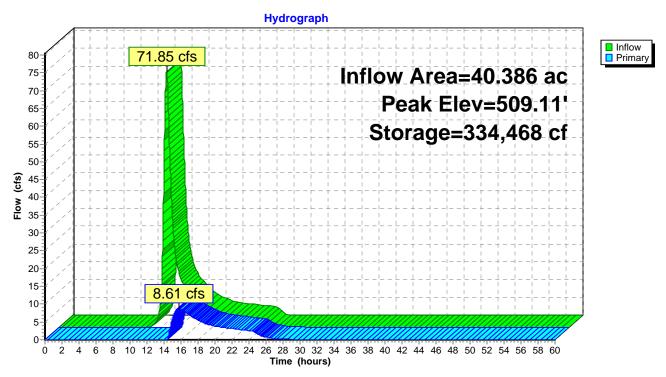
Inflow = 71.85 cfs @ 12.67 hrs, Volume= 11.234 af

Outflow = 8.61 cfs @ 15.81 hrs, Volume= 4.107 af, Atten= 88%, Lag= 188.3 min

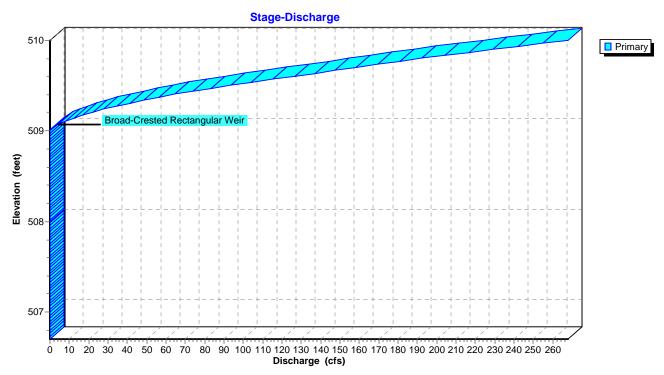
Primary = 8.61 cfs @ 15.81 hrs, Volume= 4.107 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 509.11' @ 15.81 hrs Surf.Area= 220,019 sf Storage= 334,468 cf

Plug-Flow detention time= 391.2 min calculated for 4.107 af (37% of inflow)

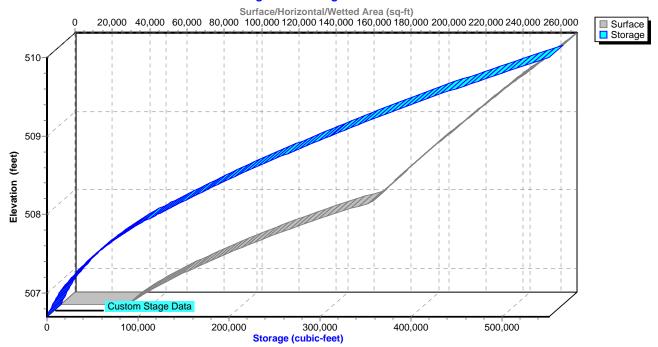

Center-of-Mass det. time= 254.3 min (1,143.4 - 889.0)

Volume	Inv	ert Avai	I.Storage	Storage Descripti	on		
#1	506.	70' 5	51,461 cf	Custom Stage D	ata (Irregular)List	ed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Perim (feet		Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
506.7 508.0 510.0	00	35,778 165,975 268,777	1,168.0 1,973.0 2,083.0	120,819	0 120,819 551,461	35,778 237,000 272,736	
Device	Routing	In	vert Ou	tlet Devices			
#1	Primary	509	He 2.5 Co	ad (feet) 0.20 0.40 0 3.00 3.50 4.00	0.60 0.80 1.00 4.50 5.00 5.50 2.50 2.70 2.68 2.0	ed Rectangular Weir 1.20 1.40 1.60 1.80 2 68 2.66 2.65 2.65 2.6	


Primary OutFlow Max=8.61 cfs @ 15.81 hrs HW=509.11' TW=0.00' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 8.61 cfs @ 0.78 fps)

Printed 7/2/2014 Page 75

Pond 102C: Pond 102C


Pond 102C: Pond 102C

Printed 7/2/2014

Page 76

Pond 102C: Pond 102C

29011.00 Existing OS

Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 77

Summary for Pond 103A: Wetland A

Inflow Area = 36.735 ac. 8.79% Impervious, Inflow Depth = 1.89" for 100-Year event

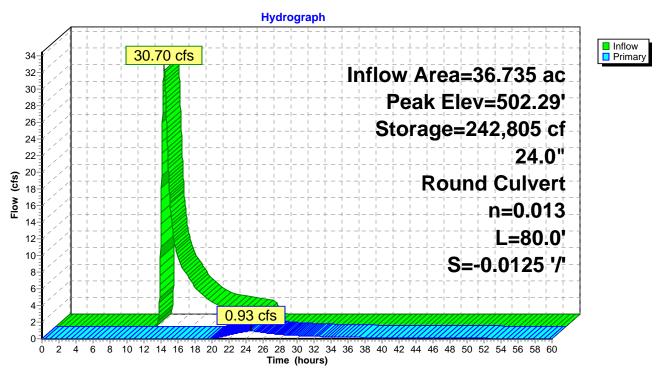
Inflow 30.70 cfs @ 12.74 hrs. Volume= 5.792 af =

0.93 cfs @ 24.57 hrs, Volume= Outflow 0.759 af, Atten= 97%, Lag= 709.8 min

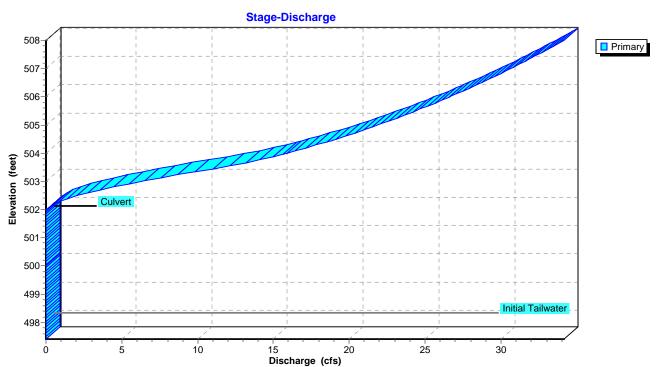
0.93 cfs @ 24.57 hrs, Volume= Primary 0.759 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 502.29' @ 24.57 hrs Surf.Area= 74,807 sf Storage= 242,805 cf

Plug-Flow detention time= 1,089.9 min calculated for 0.759 af (13% of inflow) Center-of-Mass det. time= 911.5 min (1,839.8 - 928.3)

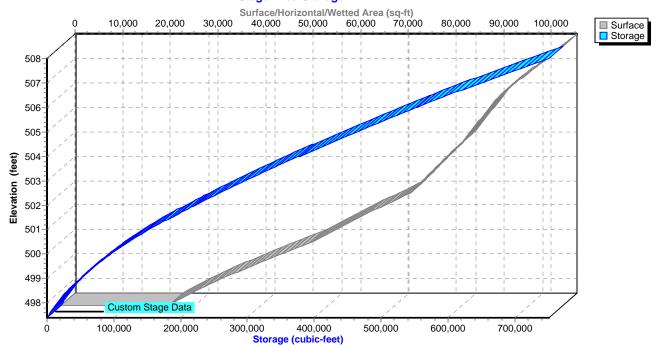

Volume	Inve	ert Avai	il.Storage	Storage Description	on		
#1	497.4	0' 7	51,373 cf	Custom Stage Da	ata (Irregular)List	ed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
497.4	10	22,575	625.0	0	0	22,575	
500.0	00	52,914	979.0	95,378	95,378	67,808	
502.0	00	73,309	1,110.0	125,670	221,048	89,686	
504.0	00	83,807	1,169.0	156,999	378,047	100,626	
506.0	00	92,176	1,226.0	175,917	553,963	111,750	
508.0	00	105,381	1,351.0	197,410	751,373	137,513	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	501	.90' 24.0 '	' Round Culvert			

L= 80.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 500.90' / 501.90' S= -0.0125 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf


Primary OutFlow Max=0.93 cfs @ 24.57 hrs HW=502.29' TW=499.72' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.93 cfs @ 2.14 fps)

Printed 7/2/2014 Page 78

Pond 103A: Wetland A


Pond 103A: Wetland A

Printed 7/2/2014

Page 79

Pond 103A: Wetland A

Printed 7/2/2014

Page 80

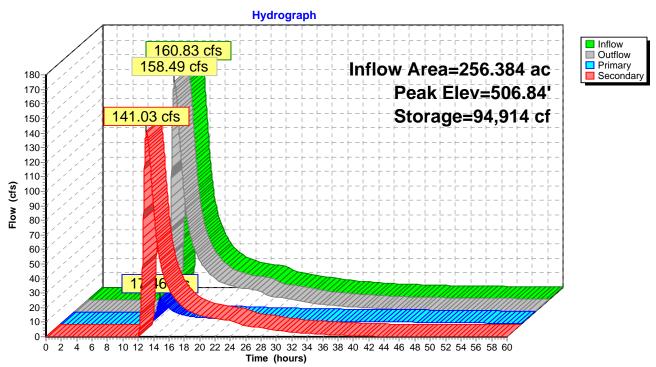
Summary for Pond 103B: Irrigation Pond

Inflow Area = 256.384 ac, 5.93% Impervious, Inflow Depth > 2.43" for 100-Year event Inflow = 160.83 cfs @ 12.96 hrs, Volume= 51.938 af Outflow = 158.49 cfs @ 13.08 hrs, Volume= 51.688 af, Atten= 1%, Lag= 7.1 min Primary = 17.46 cfs @ 13.07 hrs, Volume= 11.880 af

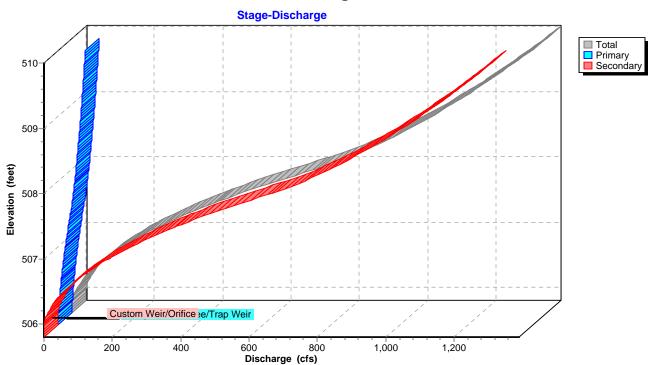
Secondary = 17.46 cfs @ 13.07 nrs, Volume= 11.880 at Secondary = 141.03 cfs @ 13.08 hrs, Volume= 39.808 at

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 506.84' @ 13.08 hrs Surf.Area= 93,674 sf Storage= 94,914 cf

Plug-Flow detention time= 33.9 min calculated for 51.688 af (100% of inflow) Center-of-Mass det. time= 22.6 min (1,165.9 - 1,143.3)

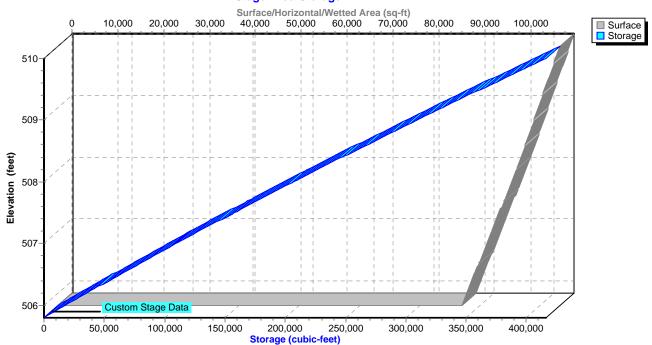

Volume	Inver	t Avail.St	orage	Storage Descripti	on		
#1	505.80	416,2	210 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)	
Elevatio	_	surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
505.8 508.0 510.0	00	100,033 1	,403.0 ,579.0 ,610.0	0 206,814 209,396	0 206,814 416,210	88,106 129,999 138,488	
Device	Routing	Invert	Outl	et Devices			
#1	Primary	505.80		long x 1.80' rise S 2.62 (C= 3.28)	harp-Crested Ve	e/Trap Weir	
#2	Secondary	506.00	Cus Hea	tom Weir/Orifice, d (feet) 0.00 0.50 th (feet) 45.00 60.	1.00 1.50 2.00	•	

Primary OutFlow Max=17.46 cfs @ 13.07 hrs HW=506.84' TW=505.85' (Dynamic Tailwater) 1=Sharp-Crested Vee/Trap Weir (Weir Controls 17.46 cfs @ 3.34 fps)


Secondary OutFlow Max=141.02 cfs @ 13.08 hrs HW=506.84' TW=505.85' (Dynamic Tailwater) 2=Custom Weir/Orifice (Weir Controls 141.02 cfs @ 2.86 fps)

Printed 7/2/2014 Page 81

Pond 103B: Irrigation Pond


Pond 103B: Irrigation Pond

Printed 7/2/2014

Page 82

Pond 103B: Irrigation Pond

Printed 7/2/2014

Page 83

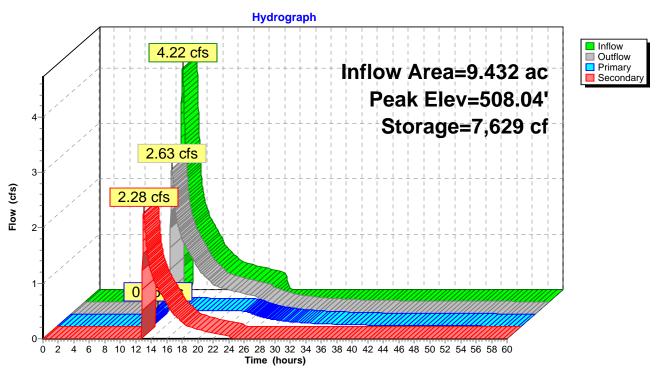
Summary for Pond 104A: Wetland D

Inflow Area = 9.432 ac, 9.40% Impervious, Inflow Depth = 1.13" for 100-Year event Inflow = 4.22 cfs @ 12.61 hrs, Volume= 0.892 af Outflow = 2.63 cfs @ 13.02 hrs, Volume= 0.870 af, Atten= 38%, Lag= 24.7 min Primary = 0.35 cfs @ 13.02 hrs, Volume= 0.420 af Secondary = 2.28 cfs @ 13.02 hrs, Volume= 0.450 af

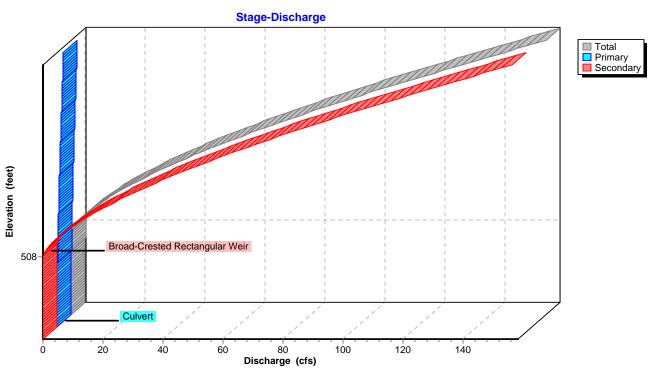
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 508.04' @ 13.02 hrs Surf.Area= 25,453 sf Storage= 7,629 cf

Plug-Flow detention time= 197.8 min calculated for 0.870 af (98% of inflow) Center-of-Mass det. time= 186.5 min (1,137.9 - 951.4)

Volume	Inve	rt Ava	il.Storage	Storage Description	n		
#1	507.7	0'	19,762 cf	Custom Stage Da	ita (Irregular) Liste	ed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
507.70 508.00 508.50	0 0	18,708 25,271 27,505	688.0 735.0 755.0	0 6,572 13,190	0 6,572 19,762	18,708 24,034 26,435	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	507		" Round Culvert 0.0' CMP, projection	ng. no headwall. I	≤ 0.900	
#2	Seconda	ry 508	Inlet n= 0 3.00' 100. Head	/ Outlet Invert= 507 .025 Corrugated m	7.70' / 507.30' S= letal, Flow Area= adth Broad-Crest 0.60 0.80 1.00 1	0.0200 '/' Cc= 0.900 0.79 sf ed Rectangular Weir .20 1.40 1.60	

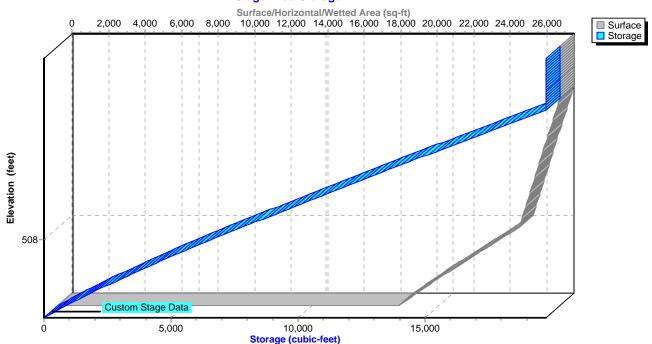

Primary OutFlow Max=0.35 cfs @ 13.02 hrs HW=508.04' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.35 cfs @ 2.19 fps)

Secondary OutFlow Max=2.28 cfs @ 13.02 hrs HW=508.04' TW=0.00' (Dynamic Tailwater)


2=Broad-Crested Rectangular Weir (Weir Controls 2.28 cfs @ 0.55 fps)

Printed 7/2/2014 Page 84

Pond 104A: Wetland D


Pond 104A: Wetland D

Printed 7/2/2014

Page 85

Pond 104A: Wetland D

Printed 7/2/2014

Page 86

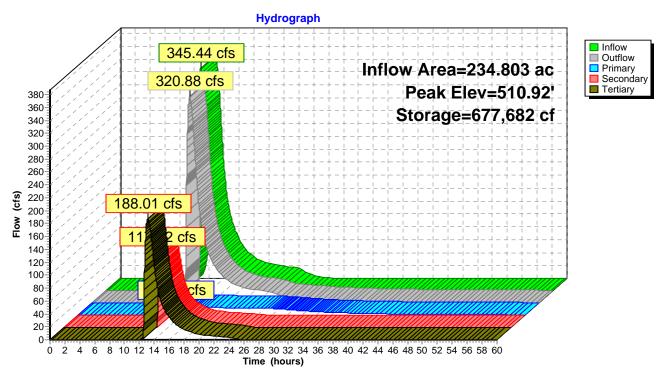
Summary for Pond 104B: Island Pond

Inflow Area = 234.803 ac. 5.37% Impervious, Inflow Depth = 4.21" for 100-Year event Inflow 345.44 cfs @ 12.72 hrs. Volume= 82.388 af 320.88 cfs @ 13.12 hrs, Volume= Outflow 80.398 af, Atten= 7%, Lag= 24.3 min 15.55 cfs @ 13.12 hrs, Volume= Primary 21.840 af Secondary = 117.32 cfs @ 13.12 hrs, Volume= 22.266 af Tertiary 188.01 cfs @ 13.12 hrs, Volume= 36.292 af

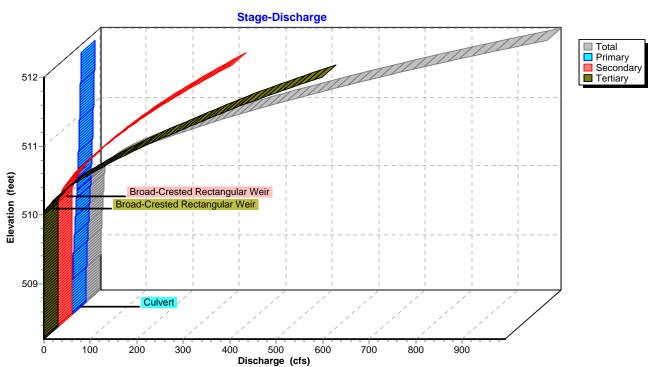
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 510.92' @ 13.12 hrs Surf.Area= 291,674 sf Storage= 677,682 cf

Plug-Flow detention time= 171.3 min calculated for 80.371 af (98% of inflow) Center-of-Mass det. time= 156.3 min (1,058.7 - 902.4)

Volume	Invert	Avail.Sto	orage	Storage Description	n	
#1	508.20'	1,023,1	36 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)
Elevatio		.Area F	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
508.2	22	8,830 3,	183.0	0	0	228,830
510.0	0 24	9,447 3,	224.0	430,316	430,316	250,515
512.0	0 34	6,000 3,	042.0	592,820	1,023,136	341,482
Device	Routing	Invert	Outl	et Devices		
#1	Primary	508.22'	24.0	" Round Culvert		
#2	Secondary	510.00'	Inlet n= 0 50.0	11.0' CMP, project / Outlet Invert= 508 0.025 Corrugated me ' long x 5.0' breadt d (feet) 0.20 0.40 (.22' / 505.43' S= 0. etal, Flow Area= 3. th Broad-Crested F	.0251 '/' Cc= 0.900 14 sf
#3	Tertiary	510.00'	Coe 2.65 80.0 Hea	3.00 3.50 4.00 4. f. (English) 2.34 2.5 2.67 2.66 2.68 2. 'long x 10.0' bread d (feet) 0.20 0.40 (f. (English) 2.49 2.5	50 2.70 2.68 2.68 .70 2.74 2.79 2.88 dth Broad-Crested 0.60 0.80 1.00 1.2	Rectangular Weir 0 1.40 1.60

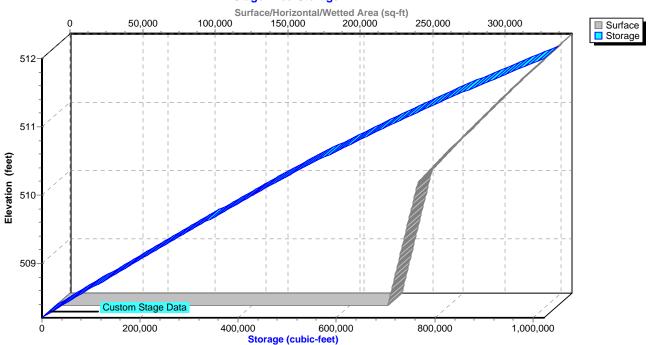

Primary OutFlow Max=15.55 cfs @ 13.12 hrs HW=510.92' TW=506.84' (Dynamic Tailwater) 1=Culvert (Inlet Controls 15.55 cfs @ 4.95 fps)

Secondary OutFlow Max=117.32 cfs @ 13.12 hrs HW=510.92' TW=506.84' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 117.32 cfs @ 2.56 fps)


Tertiary OutFlow Max=188.01 cfs @ 13.12 hrs HW=510.92' TW=505.85' (Dynamic Tailwater) 3=Broad-Crested Rectangular Weir (Weir Controls 188.01 cfs @ 2.57 fps)

Printed 7/2/2014 Page 87

Pond 104B: Island Pond


Pond 104B: Island Pond

Printed 7/2/2014

Page 88

Pond 104B: Island Pond

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 89

Summary for Pond 105A: Wetland H

[62] Hint: Exceeded Reach A106R OUTLET depth by 0.66' @ 15.86 hrs

Inflow Area = 49.602 ac, 4.77% Impervious, Inflow Depth = 3.47" for 100-Year event 122.88 cfs @ 12.33 hrs, Volume= Inflow 14.342 af

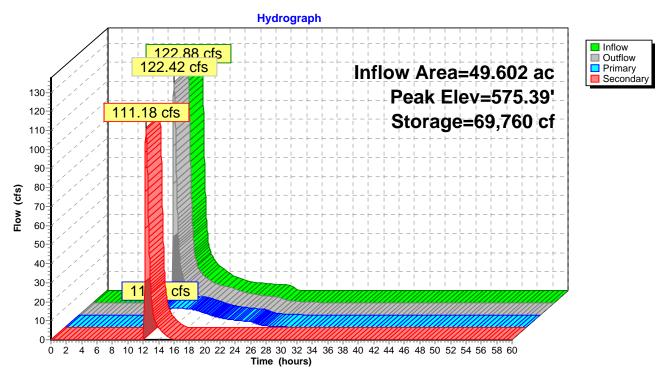
Outflow 122.42 cfs @ 12.35 hrs, Volume= 14.325 af, Atten= 0%, Lag= 1.3 min

Primary 11.24 cfs @ 12.35 hrs, Volume= 7.961 af Secondary = 111.18 cfs @ 12.35 hrs, Volume= 6.364 af

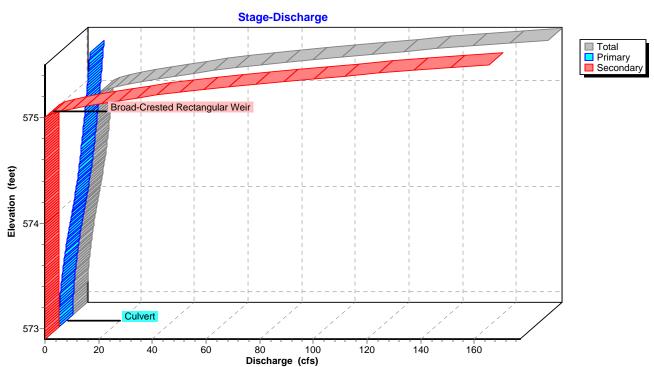
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 575.39' @ 12.35 hrs Surf.Area= 32,564 sf Storage= 69,760 cf

Plug-Flow detention time= 56.5 min calculated for 14.320 af (100% of inflow)

Center-of-Mass det. time= 56.4 min (919.2 - 862.8)

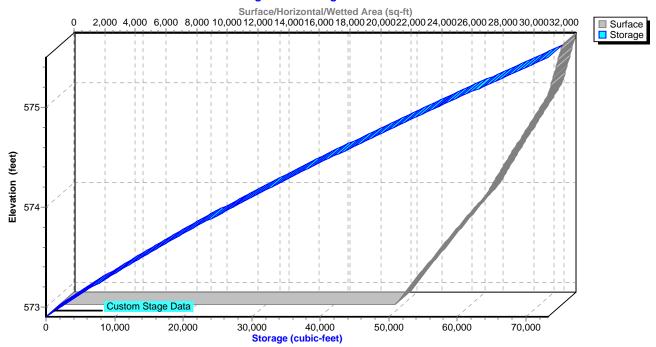

)
2.00
65
00

Primary OutFlow Max=11.24 cfs @ 12.35 hrs HW=575.39' TW=568.23' (Dynamic Tailwater) 1=Culvert (Inlet Controls 11.24 cfs @ 6.36 fps)


Secondary OutFlow Max=111.10 cfs @ 12.35 hrs HW=575.39' TW=568.23' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 111.10 cfs @ 1.57 fps)

Printed 7/2/2014 Page 90

Pond 105A: Wetland H


Pond 105A: Wetland H

Printed 7/2/2014

Page 91

Pond 105A: Wetland H

29011.00 Existing OS

Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 92

Summary for Pond 105B: Wetland J

Inflow Area = 154.267 ac, 1.16% Impervious, Inflow Depth = 4.73" for 100-Year event

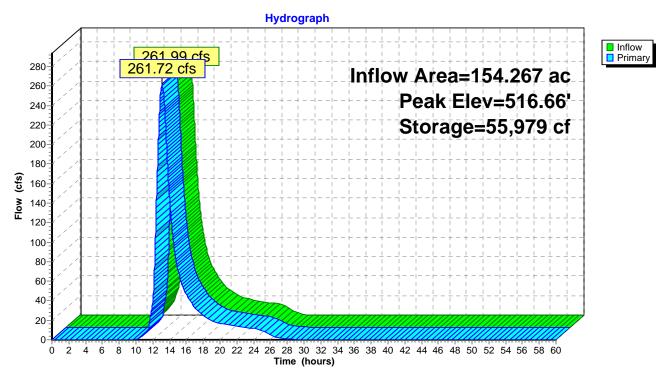
Inflow = 261.99 cfs @ 13.06 hrs, Volume= 60.825 af

Outflow = 261.72 cfs @ 13.08 hrs, Volume= 60.824 af, Atten= 0%, Lag= 1.2 min

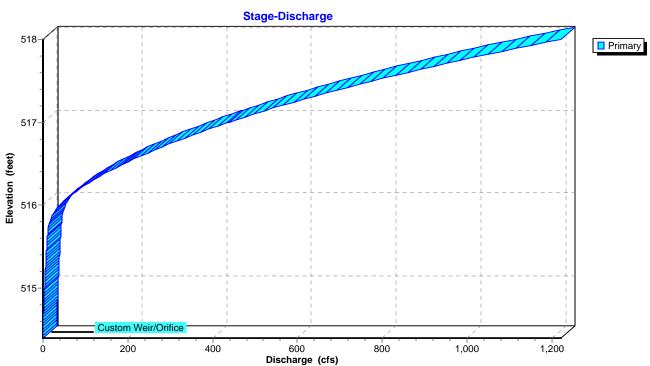
Primary = 261.72 cfs @ 13.08 hrs, Volume= 60.824 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 516.66' @ 13.08 hrs Surf.Area= 29,340 sf Storage= 55,979 cf

Plug-Flow detention time= 13.0 min calculated for 60.824 af (100% of inflow)

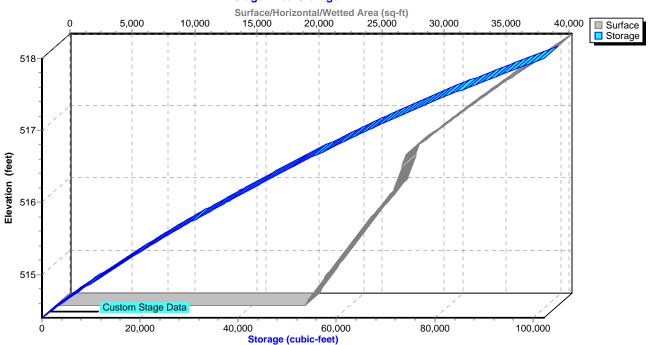

Center-of-Mass det. time= 12.9 min (910.2 - 897.3)

Volume	Invert	t Avail.	Storage	Storage Description	n		
#1	514.40	' 10	2,307 cf	Custom Stage Da	ıta (Irregular)Listed	below (Recalc)	
Elevation (feet)		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
514.40)	19,952	567.0	0	0	19,952	
516.00)	27,082	686.0	37,482	37,482	31,860	
516.50)	28,121	699.0	13,800	51,282	33,334	
518.00)	40,275	840.0	51,025	102,307	50,641	
Device I	Routing	Inv	ert Outle	et Devices			
#1	Primary	514.	40' Cus t	om Weir/Orifice, C	Cv= 2.62 (C= 3.28)		
	<u> </u>			d (feet) 0.00 1.25			
			Widt	h (feet) 2.33 2.33	90.00 120.00 170.	00	


Primary OutFlow Max=261.69 cfs @ 13.08 hrs HW=516.66' TW=510.91' (Dynamic Tailwater) 1=Custom Weir/Orifice (Weir Controls 261.69 cfs @ 3.07 fps)

Printed 7/2/2014 Page 93

Pond 105B: Wetland J


Pond 105B: Wetland J

Printed 7/2/2014

Page 94

Pond 105B: Wetland J

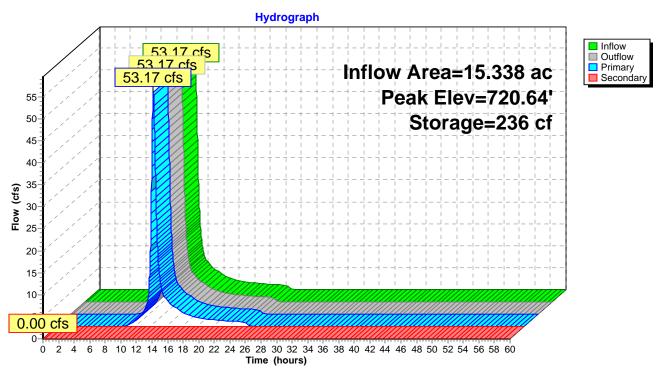
Printed 7/2/2014

Page 95

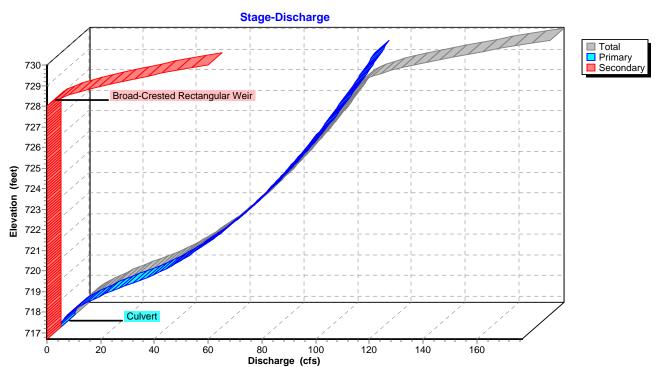
Summary for Pond 106A: 36" Culvert

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 720.64' @ 12.37 hrs Surf.Area= 180 sf Storage= 236 cf

Plug-Flow detention time= 0.0 min calculated for 6.224 af (100% of inflow) Center-of-Mass det. time= 0.0 min (840.9 - 840.9)

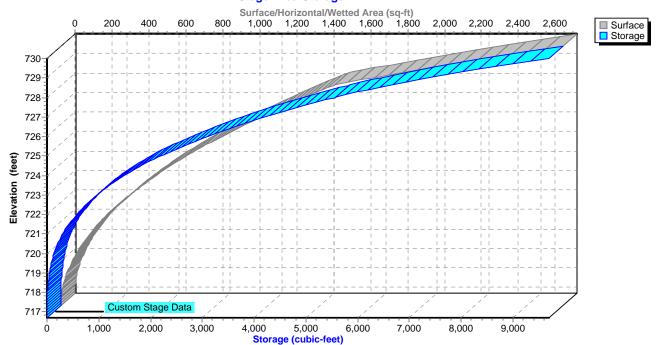

Volume	Inver	t Avai	I.Storage	Storage Description	n		
#1	716.70	'	9,700 cf	Custom Stage Da	ata (Irregular)Listed	below (Recalc)	
Elevatio	·: -	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	t)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
716.7	0	0	0.0	0	0	0	
728.0	0	1,478	185.0	5,567	5,567	2,917	
730.0	0	2,717	256.0	4,133	9,700	5,448	
Device	Routing	Inv	vert Outl	et Devices			
#1	Primary	716	.70' 36.0	" Round Culvert			
	•		L= 1	33.0' CMP, square	e edge headwall, K	e= 0.500	
						0.2308 '/' Cc= 0.900	
			n=0	.025 Corrugated m	etal, Flow Area= 7	.07 sf	
#2	Secondary	728	.00' 8.0'	long x 5.0' breadtl	h Broad-Crested R	ectangular Weir	
			Hea	d (feet) 0.20 0.40	0.60 0.80 1.00 1.3	20 1.40 1.60 1.80 2.0	00
			2.50	3.00 3.50 4.00 4	.50 5.00 5.50		
			Coe	f. (English) 2.34 2.	50 2.70 2.68 2.68	2.66 2.65 2.65 2.65	j
			2.65	2.67 2.66 2.68 2	2.70 2.74 2.79 2.8	3	

Primary OutFlow Max=53.12 cfs @ 12.37 hrs HW=720.64' TW=687.25' (Dynamic Tailwater) 1=Culvert (Inlet Controls 53.12 cfs @ 7.52 fps)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=716.70' TW=686.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 7/2/2014 Page 96

Pond 106A: 36" Culvert



Pond 106A: 36" Culvert

Printed 7/2/2014 Page 97

Pond 106A: 36" Culvert

29011.00 Existing OS

Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 98

Summary for Pond 106B: Wetland J

Inflow Area = 130.289 ac. 0.83% Impervious, Inflow Depth = 4.87" for 100-Year event

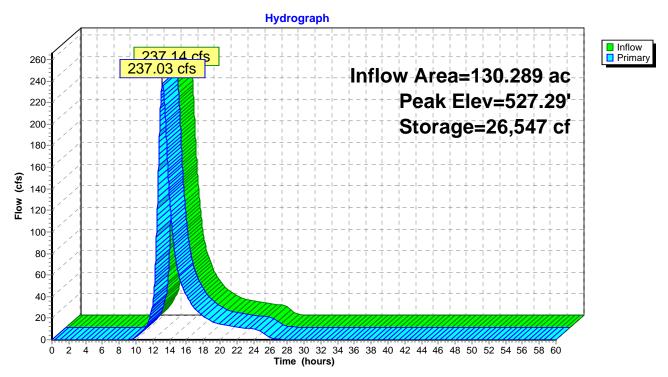
Inflow 237.14 cfs @ 13.14 hrs. Volume= 52.891 af

237.03 cfs @ 13.15 hrs, Volume= Outflow 52.891 af, Atten= 0%, Lag= 0.7 min

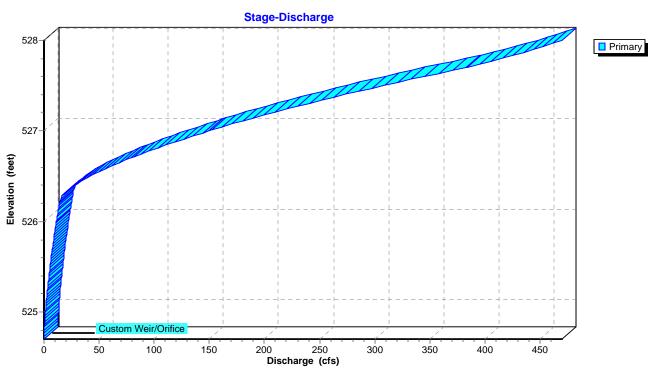
237.03 cfs @ 13.15 hrs, Volume= Primary 52.891 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 527.29' @ 13.15 hrs Surf.Area= 12,660 sf Storage= 26,547 cf

Plug-Flow detention time= 5.9 min calculated for 52.873 af (100% of inflow) Center-of-Mass det. time= 6.0 min (901.6 - 895.6)

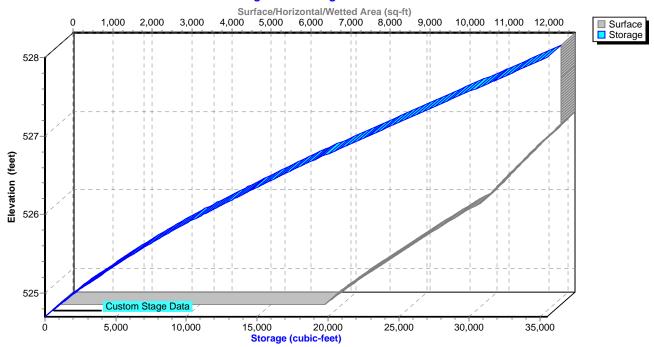

Volume	Invert Ava	ail.Storage	Storage Descripti	on		
#1	524.70'	35,483 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)	
Elevation (feet)	Surf.Area (sq-ft)		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
524.70	6,700	344.0	0	0	6,700	
526.00	10,653	430.0	11,181	11,181	12,021	
527.00	12,660	461.0	11,642	22,823	14,264	
528.00	12,660	461.0	12,660	35,483	14,725	
Device Ro	outing I	nvert Outle	et Devices			
#1 Pr	imary 52	4.70' Cus	tom Weir/Orifice,	Cv= 2.62 (C= 3.28	3)	
		Head	d (feet) 0.00 1.50	1.60 2.00 3.00		

Width (feet) 2.33 2.33 60.00 60.00 70.00


Primary OutFlow Max=236.98 cfs @ 13.15 hrs HW=527.29' TW=516.66' (Dynamic Tailwater) 1=Custom Weir/Orifice (Weir Controls 236.98 cfs @ 3.48 fps)

Printed 7/2/2014 Page 99

Pond 106B: Wetland J


Pond 106B: Wetland J

Printed 7/2/2014 Page 100

Pond 106B: Wetland J

Printed 7/2/2014

Page 101

Summary for Pond 107A: 24" Culvert

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

95.411 ac, 2.35% Impervious, Inflow Depth = 4.48" for 100-Year event Inflow Area =

199.14 cfs @ 12.82 hrs, Volume= Inflow 35.649 af

199.16 cfs @ 12.82 hrs, Volume= 35.649 af, Atten= 0%, Lag= 0.2 min Outflow

Primary = 45.09 cfs @ 12.82 hrs, Volume= 22.255 af Secondary = 154.06 cfs @ 12.82 hrs, Volume= 13.394 af

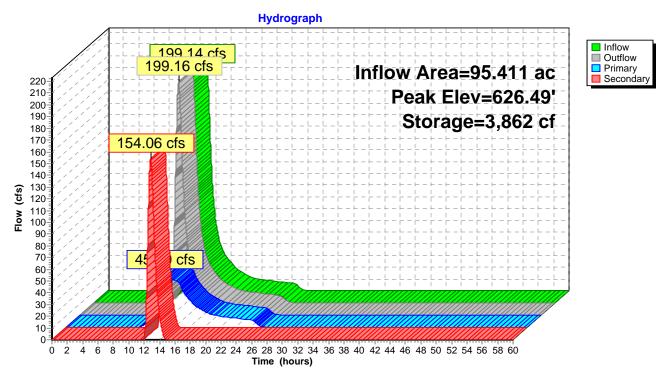
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 626.49' @ 12.82 hrs Surf.Area= 1,682 sf Storage= 3,862 cf

Plug-Flow detention time= 0.3 min calculated for 35.637 af (100% of inflow)

Center-of-Mass det. time= 0.3 min (880.6 - 880.2)

Volume	Invert	Avail.S	Storage	Storage Description	า	
#1	619.60'	13	,340 cf	Custom Stage Dat	ta (Irregular)Listed	below (Recalc)
Elevatio (fee		ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
619.6		0	0.0	0	Ó	0
626.0		1,453	185.0	3,100	3,100	2,787
628.0		2,500	275.0	3,906	7,006	6,114
630.0	U	3,885	330.0	6,334	13,340	8,830
Device	Routing	Inve	rt Outle	et Devices		
#1	Primary	619.8	_	" Round Culvert		
#2	Socondary	625.0	Inlet n= 0	45.0' RCP, groove / Outlet Invert= 619. .010, Flow Area= 3.	80' / 607.40' S= 0. 14 sf	0855 '/' Cc= 0.900
#2	Secondary	625.0				Rectangular Weir X 0.00 0 1.40 1.60 1.80 2.00
			2.50	3.00 3.50 4.00 4.5	50 5.00 5.50	2.66 2.65 2.65 2.65
#3	Secondary	625.0	2.65 0' Cus t	2.67 2.66 2.68 2.5tom Weir/Orifice, Ctd (feet) 0.00 0.50 1	70 2.74 2.79 2.88 v= 2.62 (C= 3.28)	
				h (feet) 20.00 25.00		

Primary OutFlow Max=45.09 cfs @ 12.82 hrs HW=626.49' TW=610.75' (Dynamic Tailwater) 1=Culvert (Inlet Controls 45.09 cfs @ 14.35 fps)

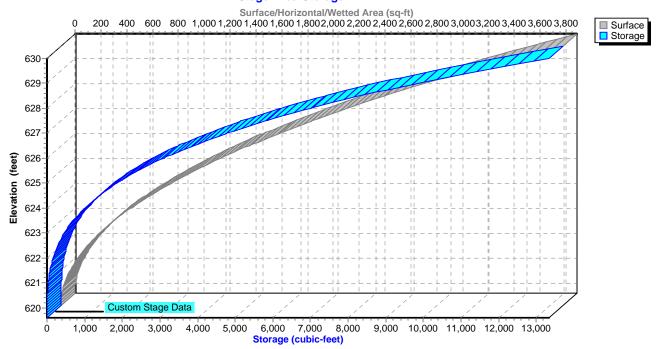

Secondary OutFlow Max=154.03 cfs @ 12.82 hrs HW=626.49' TW=613.52' (Dynamic Tailwater)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)


-3=Custom Weir/Orifice (Weir Controls 154.03 cfs @ 3.78 fps)

Printed 7/2/2014 Page 102

Pond 107A: 24" Culvert


Pond 107A: 24" Culvert

Printed 7/2/2014

Page 103

Pond 107A: 24" Culvert

29011.00 Existing OS

Type III 24-hr 100-Year Rainfall=8.00", la/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C Printed 7/2/2014 HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC Page 104

Summary for Pond 107B: Wetland

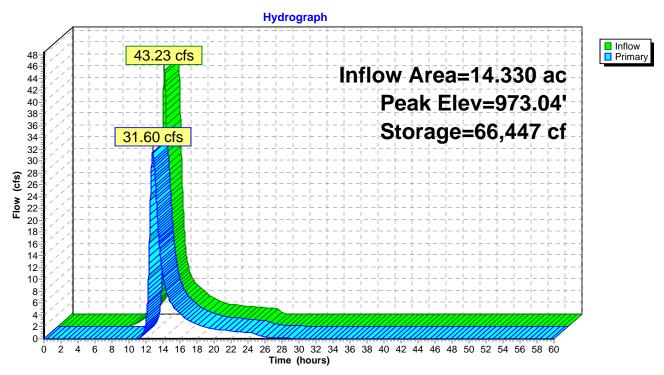
Inflow Area = 14.330 ac, 0.00% Impervious, Inflow Depth = 5.00" for 100-Year event

Inflow = 43.23 cfs @ 12.51 hrs, Volume= 5.972 af

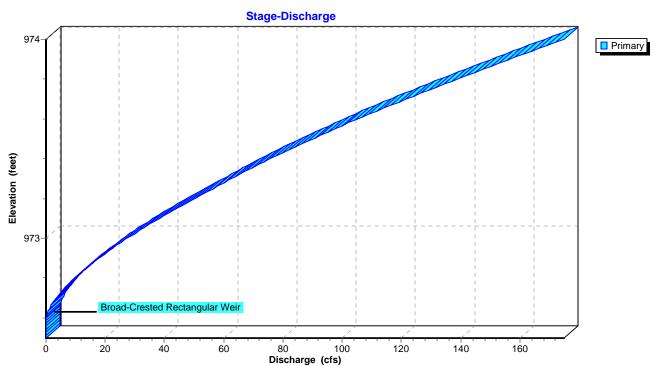
Outflow = 31.60 cfs @ 12.80 hrs, Volume= 5.696 af, Atten= 27%, Lag= 17.3 min

Primary = 31.60 cfs @ 12.80 hrs, Volume= 5.696 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 973.04' @ 12.80 hrs Surf.Area= 126,505 sf Storage= 66,447 cf


Plug-Flow detention time= 83.5 min calculated for 5.694 af (95% of inflow) Center-of-Mass det. time= 58.4 min (907.1 - 848.7)

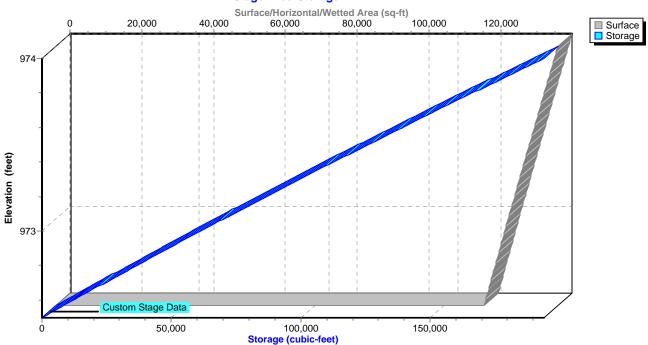
Volume	Inve	ert Avai	I.Storage	Storage Description	on		
#1	972.5	50' 1	94,134 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
972.5 974.0	-	119,286 139,831	2,006.0 2,145.0	0 194,134	0 194,134	119,286 165,307	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	972	Head	d (feet) 0.20 0.40	0.60 0.80 1.00	ed Rectangular Weir 1.20 1.40 1.60 63 2.64 2.64 2.63	


Primary OutFlow Max=31.60 cfs @ 12.80 hrs HW=973.04' TW=972.49' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 31.60 cfs @ 1.79 fps)

Printed 7/2/2014 Page 105

Pond 107B: Wetland

Pond 107B: Wetland



Printed 7/2/2014

Page 106

Pond 107B: Wetland

Stage-Area-Storage

Printed 7/2/2014

Page 107

Summary for Pond 108A: 36" Culvert

Inflow Area = 5.526 ac, 2.32% Impervious, Inflow Depth = 31.56" for 100-Year event

Inflow = 159.27 cfs @ 12.82 hrs, Volume= 14.535 af

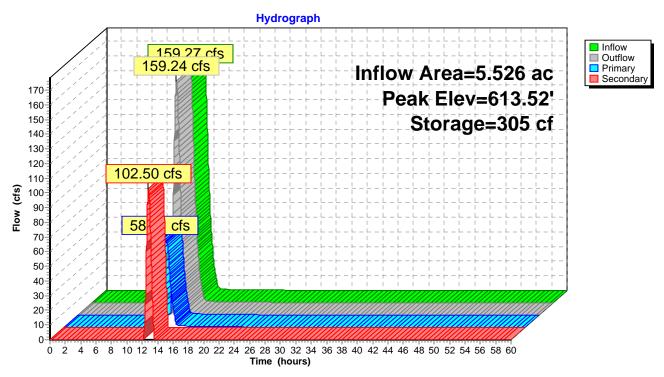
Outflow = 159.24 cfs @ 12.82 hrs, Volume= 14.535 af, Atten= 0%, Lag= 0.0 min

Primary = 58.91 cfs @ 12.49 hrs, Volume= 8.660 af Secondary = 102.50 cfs @ 12.82 hrs, Volume= 5.875 af

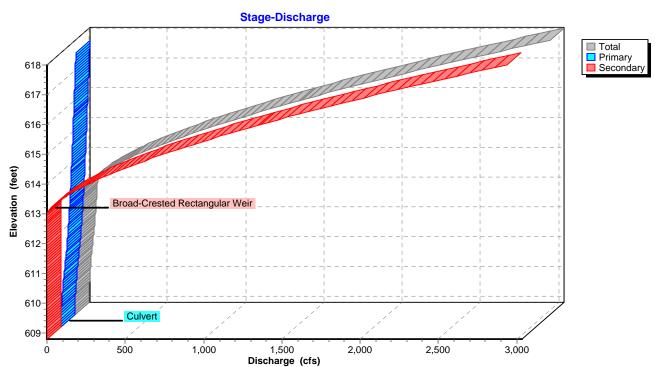
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 613.52' @ 12.82 hrs Surf.Area= 808 sf Storage= 305 cf

Plug-Flow detention time= 0.4 min calculated for 14.535 af (100% of inflow)

Center-of-Mass det. time= 0.0 min (790.4 - 790.4)

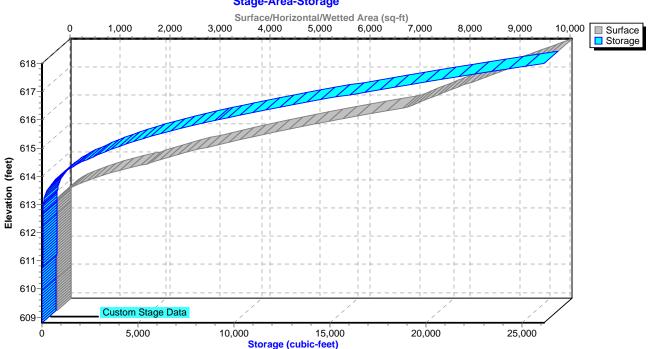

Volume	Inve	rt Avail.	Storage	Storage Description				
#1	608.8	0' 26	6,148 cf	Custom Stage Da	ta (Irregular)Liste	d below (Recalc)		
Elevation	n :	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
608.8	30	13	13.0	0	0	13		
612.7	' 0	13	13.0	51	51	64		
614.0	00	1,828	415.0	865	915	13,758		
616.0	00	7,012	545.0	8,280	9,195	23,736		
618.0	00	10,030	620.0	16,952	26,148	30,786		
Device	Routing	Inve	ert Outle	et Devices				
#1	Primary	608.8	3 6.0	" Round Culvert				
	_		L= 4	5.0' CMP, square e	edge headwall, Ke	e= 0.500		
			Inlet	/ Outlet Invert= 608	.80' / 606.90' S=	0.0422 '/' Cc= 0.900		
				.025 Corrugated me				
#2	Secondar	y 613.0	Head	0' long x 24.0' brea d (feet) 0.20 0.40 (f. (English) 2.68 2.7	0.60 0.80 1.00 1			

Primary OutFlow Max=58.99 cfs @ 12.49 hrs HW=613.30' TW=610.30' (Dynamic Tailwater) 1=Culvert (Inlet Controls 58.99 cfs @ 8.35 fps)


Secondary OutFlow Max=102.47 cfs @ 12.82 hrs HW=613.52' TW=610.75' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 102.47 cfs @ 1.95 fps)

Printed 7/2/2014 Page 108

Pond 108A: 36" Culvert


Pond 108A: 36" Culvert

Printed 7/2/2014 Page 109

Pond 108A: 36" Culvert

Stage-Area-Storage

Printed 7/2/2014

Page 110

Summary for Pond 108B: Wetland N

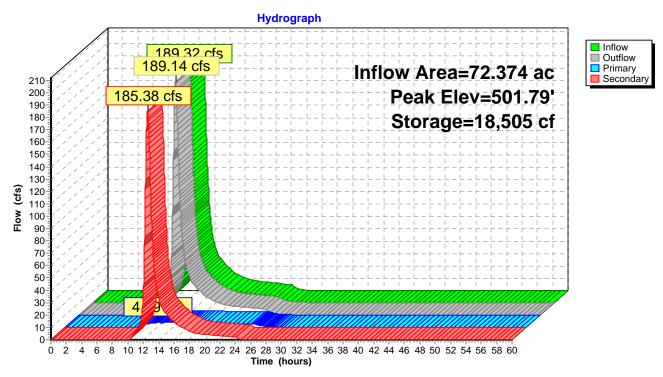
Inflow Area = 72.374 ac, 0.70% Impervious, Inflow Depth = 4.87" for 100-Year event Inflow = 189.32 cfs @ 12.55 hrs, Volume= 29.381 af

Outflow = 189.14 cfs @ 12.56 hrs, Volume= 29.356 af, Atten= 0%, Lag= 0.8 min Primary = 4.39 cfs @ 12.10 hrs, Volume= 4.478 af

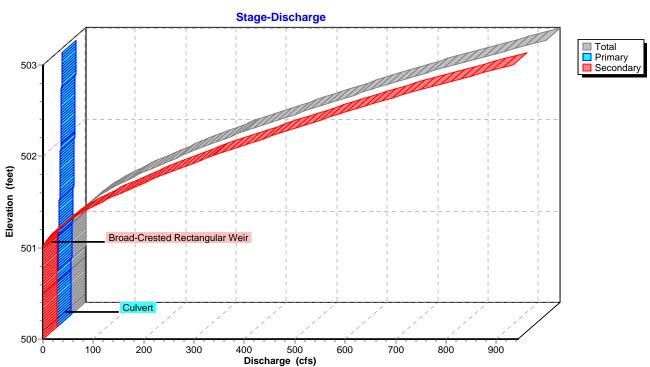
Secondary = 185.38 cfs @ 12.56 hrs, Volume= 24.878 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 501.79' @ 12.57 hrs Surf.Area= 11,308 sf Storage= 18,505 cf

Plug-Flow detention time= 9.7 min calculated for 29.356 af (100% of inflow) Center-of-Mass det. time= 8.7 min (871.9 - 863.2)


Volume	Inve	rt Avail	l.Storage	Storage Description	n	
#1	500.0	0' 3	32,385 cf	Custom Stage Da	ta (Irregular)Liste	d below (Recalc)
Elevatio	n s	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	= =	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
500.0	0	8,398	412.0	0	0	8,398
500.5	60	10,185	434.0	4,639	4,639	9,894
502.0	0	11,496	452.0	16,251	20,889	11,327
503.0	0	11,496	452.0	11,496	32,385	11,779
Device	Routing	Inv	ert Outle	et Devices		
#1	Primary	500.	.10' 18.0 '	Round Culvert		
#2	L Ir n: #2 Secondary 501.00' 1 : H		Inlet n= 0 .00' 125. Head	.025 Corrugated me	.10' / 499.60' S= etal, Flow Area= 1 adth Broad-Crest 0.60 0.80 1.00 1	0.0250 '/' Cc= 0.900 1.77 sf ed Rectangular Weir .20 1.40 1.60

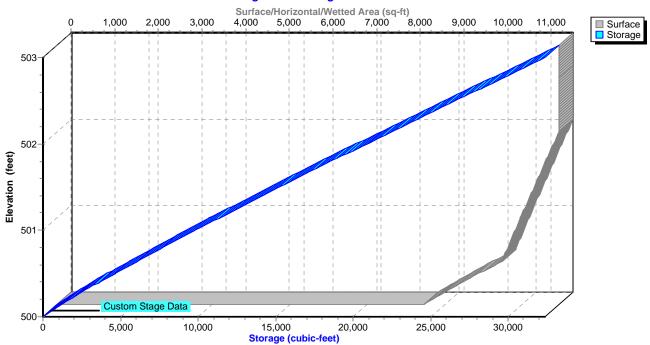
Primary OutFlow Max=4.39 cfs @ 12.10 hrs HW=501.33' TW=500.62' (Dynamic Tailwater) 1=Culvert (Outlet Controls 4.39 cfs @ 3.86 fps)


Secondary OutFlow Max=185.32 cfs @ 12.56 hrs HW=501.79' TW=501.48' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 185.32 cfs @ 1.88 fps)

Printed 7/2/2014 Page 111

Pond 108B: Wetland N

Pond 108B: Wetland N



Printed 7/2/2014

Page 112

Pond 108B: Wetland N

Stage-Area-Storage

Printed 7/2/2014

Page 113

Summary for Pond 109B: 36" Culvert

Inflow Area = 11.276 ac, 0.04% Impervious, Inflow Depth = 5.00" for 100-Year event

Inflow = 38.96 cfs @ 12.39 hrs, Volume= 4.699 af

Outflow = 38.91 cfs @ 12.40 hrs, Volume= 4.699 af, Atten= 0%, Lag= 0.7 min

Primary = 38.91 cfs @ 12.40 hrs, Volume= 4.699 af

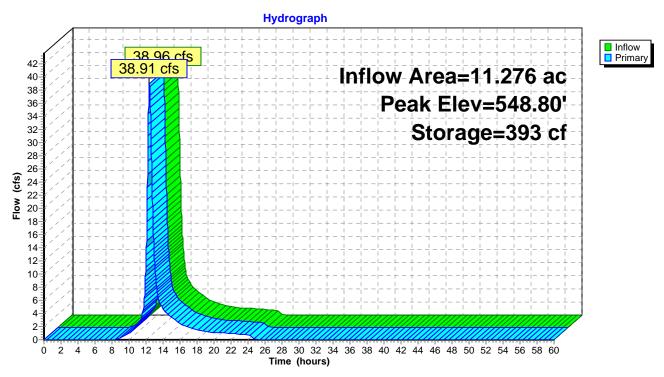
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

Peak Elev= 548.80' @ 12.40 hrs Surf.Area= 311 sf Storage= 393 cf

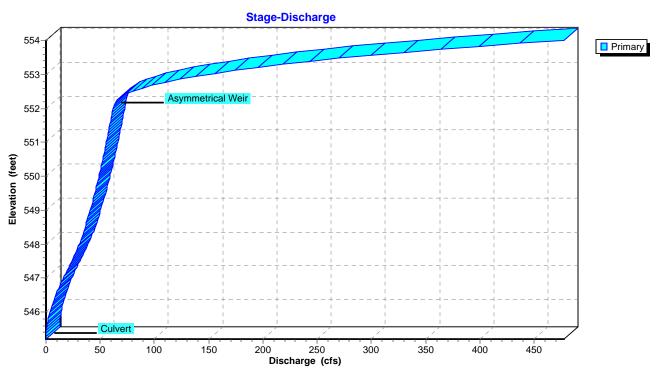
Plug-Flow detention time= 0.1 min calculated for 4.698 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (840.1 - 840.0)

Volume	Inv	ert Avai	l.Storage	Storage Description	on		
#1	545.	20'	5,884 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)	
Elevation	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
545.2	20	0	0.0	0	0	0	
548.0	00	203	65.0	189	189	348	
550.0	00	519	101.0	698	887	852	
552.0	00	1,050	140.0	1,538	2,425	1,638	
554.0	00	2,514	230.0	3,459	5,884	4,313	
Device	Routing	Inv	ert Outle	et Devices			
#1	Primary	545.	20' 36.0	" Round Culvert			
	•		L= 9	6.0' CMP, project	ing, no headwall,	Ke= 0.900	
			Inlet	/ Outlet Invert= 54	5.20' / 532.20' S:	= 0.1354 '/' Cc= 0	.900
			n= 0	.025 Corrugated n	netal, Flow Area=	: 7.07 sf	
#2	Primary	552.	.00' Asy ı	mmetrical Weir, C	= 3.27		
			Offse	et (feet) 0.00 35.0	0 65.00 95.00		
			Heig	ht (feet) 2.00 0.60	0.00 2.00		

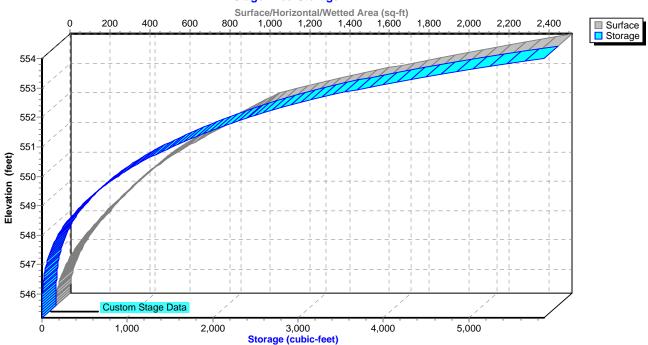

Primary OutFlow Max=38.90 cfs @ 12.40 hrs HW=548.80' TW=533.31' (Dynamic Tailwater)

1=Culvert (Inlet Controls 38.90 cfs @ 5.50 fps)


—2=Asymmetrical Weir (Controls 0.00 cfs)

Printed 7/2/2014 Page 114

Pond 109B: 36" Culvert


Pond 109B: 36" Culvert

Printed 7/2/2014 Page 115

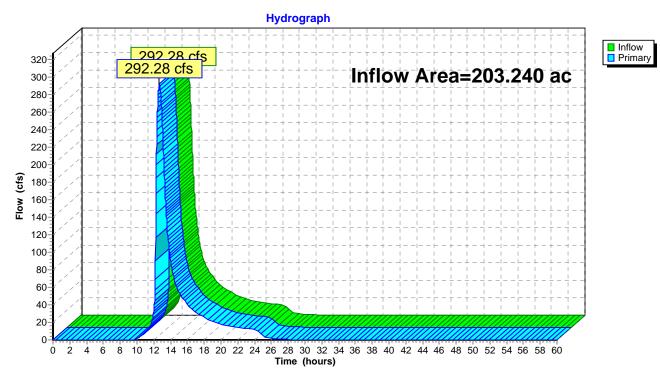
Pond 109B: 36" Culvert

Stage-Area-Storage

Printed 7/2/2014

Page 116

Summary for Link A: Amenia Stream


Inflow Area = 203.240 ac, 3.66% Impervious, Inflow Depth = 3.33" for 100-Year event

Inflow = 292.28 cfs @ 12.66 hrs, Volume= 56.445 af

Primary = 292.28 cfs @ 12.66 hrs, Volume= 56.445 af, Atten= 0%, Lag= 0.0 min

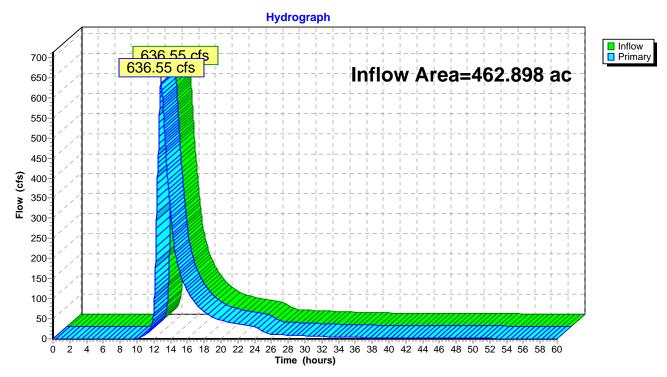
Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs

Link A: Amenia Stream

Printed 7/2/2014

Page 117

Summary for Link B: Wetland


Inflow Area = 462.898 ac, 3.63% Impervious, Inflow Depth > 3.96" for 100-Year event

Inflow = 636.55 cfs @ 12.85 hrs, Volume= 152.587 af

Primary = 636.55 cfs @ 12.85 hrs, Volume= 152.587 af, Atten= 0%, Lag= 0.0 min

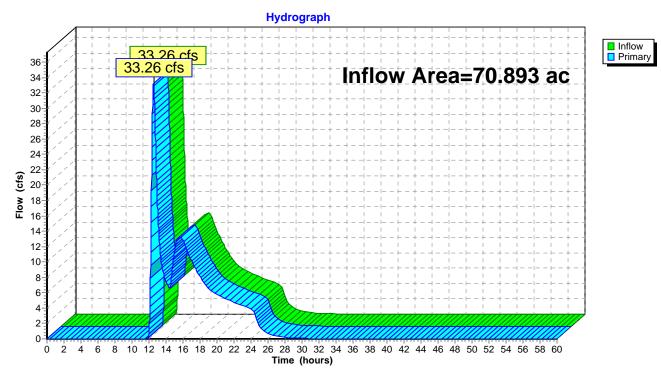
Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs

Link B: Wetland

Printed 7/2/2014

Page 118

Summary for Link C: Culvert


Inflow Area = 70.893 ac, 4.53% Impervious, Inflow Depth = 1.56" for 100-Year event

Inflow = 33.26 cfs @ 12.53 hrs, Volume= 9.208 af

Primary = 33.26 cfs @ 12.53 hrs, Volume= 9.208 af, Atten= 0%, Lag= 0.0 min

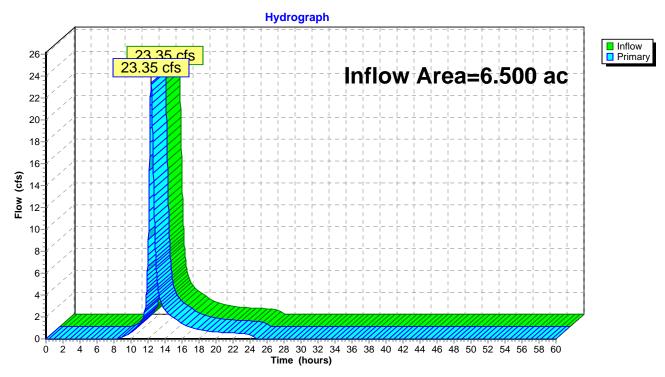
Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs

Link C: Culvert

Printed 7/2/2014

Page 119

Summary for Link D: Culvert


Inflow Area = 6.500 ac, 0.00% Impervious, Inflow Depth = 5.00" for 100-Year event

Inflow = 23.35 cfs @ 12.35 hrs, Volume= 2.709 af

Primary = 23.35 cfs @ 12.35 hrs, Volume= 2.709 af, Atten= 0%, Lag= 0.0 min

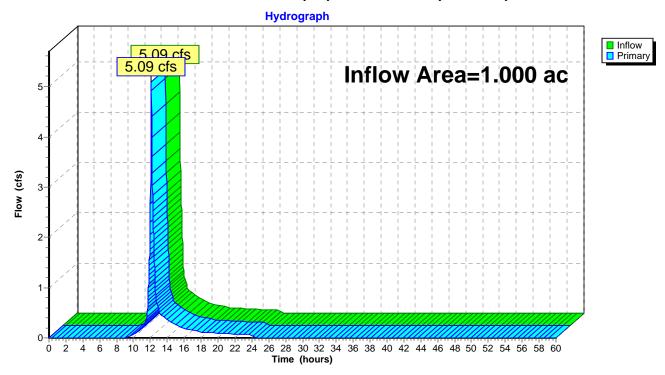
Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs

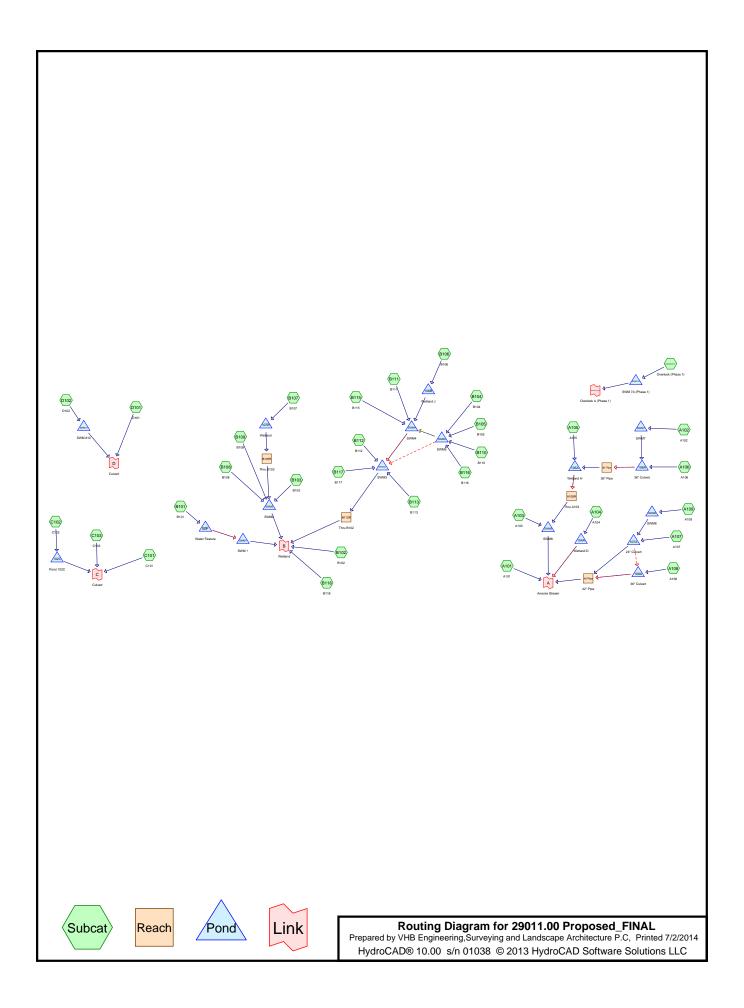
Link D: Culvert

Printed 7/2/2014

Page 120

Summary for Link Overlook-A (P1): Overlook A (Phase 1)


Inflow Area = 1.000 ac, 0.00% Impervious, Inflow Depth = 4.48" for 100-Year event


Inflow = 5.09 cfs @ 12.11 hrs, Volume= 0.374 af

Primary = 5.09 cfs @ 12.11 hrs, Volume= 0.374 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs

Link Overlook-A (P1): Overlook A (Phase 1)

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
168.007	39	>75% Grass cover, Good, HSG A (A101, A103, A104, A105, B101, B102, B104,
		B105, B106, B111, B112, B113, B115, B116, B117, B118, C101, C102, C103)
25.839	61	>75% Grass cover, Good, HSG B (A101, A103, A104, A106, A107, A108, A109,
		B102, B106)
149.391	74	>75% Grass cover, Good, HSG C (A101, A102, A103, A104, A105, A106, A107,
		A109, B101, B102, B103, B104, B105, B106, B108, B109, B110, B111, B112, B115,
		C101, C102, Ocerlook (P1))
22.616	80	>75% Grass cover, Good, HSG D (A103, A106, A107, A109, B101, B102, B103,
		B105, B106, B107, B108, B109, B112, B113, B117, C102)
15.426	98	Building roof (A101, A102, A103, A105, A107, A108, B101, B103, B104, B105,
		B106, B108, B109, B110, B111, B112, B113, B115, B117, B118, C103)
0.260	89	Gravel roads and parking, HSG C (Ocerlook (P1))
0.084	91	Gravel roads, HSG D (D102)
3.067	96	Gravel surface (A103, A107, A108, B101, B102, B103, B104, B105, B106, B107,
		B113, C101, C102)
2.000	98	Paved parking, HSG B (A109)
34.108	98	Paved surface (A101, A102, A103, A104, A105, A106, A107, A108, B101, B102,
		B103, B104, B105, B106, B108, B109, B110, B111, B112, B113, B115, B116, B117,
		B118, C101, C102, C103, D102)
0.331	98	Rock Outcrop/Ledge (C102, C103)
0.857	98	Roofs, HSG B (A109)
1.006	30	Sand Trap, HSG C (A104, A105, B101, B102, B104, B109, B115)
2.070	30	Sand trap, HSG A (A101, A103, A104, A105, B101, B102, B112, B115)
0.160	30	Sand trap, HSG B (A101, A103)
13.938	98	Water Surface (A102, A103, A104, A105, A107, B101, B102, B109, B111, B112,
		B116, C102)
17.308	30	Woods, Good, HSG A (A101, A103, A104, A105, B101, B102, B112, B113, B115,
		B117, B118, C101, C102, C103)
14.630	55 70	Woods, Good, HSG B (A103, A104, A106, A107, A108, A109)
52.704	70	Woods, Good, HSG C (A102, A103, A104, A105, A106, A107, A109, B101, B102,
222.252		B104, B106, B108, B109, B110, B112, B115, C101, C102, C103, Ocerlook (P1))
266.653	77	Woods, Good, HSG D (A103, A106, A107, A109, B101, B102, B103, B105, B106, B107, B109
700 155	00	B107, B108, B109, B113, B117, C102, D101)
790.455	68	TOTAL AREA

Printed 7/2/2014 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
187.385	HSG A	A101, A103, A104, A105, B101, B102, B104, B105, B106, B111, B112, B113,
		B115, B116, B117, B118, C101, C102, C103
43.486	HSG B	A101, A103, A104, A106, A107, A108, A109, B102, B106
203.361	HSG C	A101, A102, A103, A104, A105, A106, A107, A109, B101, B102, B103, B104,
		B105, B106, B108, B109, B110, B111, B112, B115, C101, C102, C103, Ocerlook
		(P1)
289.353	HSG D	A103, A106, A107, A109, B101, B102, B103, B105, B106, B107, B108, B109,
		B112, B113, B117, C102, D101, D102
66.870	Other	A101, A102, A103, A104, A105, A106, A107, A108, B101, B102, B103, B104,
		B105, B106, B107, B108, B109, B110, B111, B112, B113, B115, B116, B117,
		B118, C101, C102, C103, D102
790.455		TOTAL AREA

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014 Page 4

Ground Covers (all nodes)

	HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
	68.007	25.839	149.391	22.616	0.000	365.853	>75% Grass cover, Good	
•	00.001	20.000	1 10.001	22.010	0.000	000.000	27070 C1000 00V01, C000	A102,
								A103,
								A104,
								A105,
								A106,
								A107,
								A108,
								A109,
								B101,
								B102,
								B103,
								B104,
								B105,
								B106,
								B107,
								B108,
								B109,
								B110,
								B111,
								B112,
								B113,
								B115,
								B116,
								B117,
								B118,
								C101,
								C102,
								C103,
								Ocerlook
								(P1)
	0.000	0.000	0.000	0.000	15.426	15.426	Building roof	A101,
								A102,
								A103,
								A105,
								A107,
								A108,
								B101,
								B103,
								B104,
								B105,
								B106,
								B108,
								B109,
								B110,
								B111,

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014 Page 5

Ground Covers (all nodes) (continued)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	0.084	0.000	0.084	Gravel roads	D102
0.000	0.000	0.260	0.000	0.000	0.260	Gravel roads and parking	Ocerlook (P1)
0.000	0.000	0.000	0.000	3.067	3.067	Gravel surface	A103,
							A107,
							A108,
							B101,
							B102,
							B103,
							B104,
							B105, B106,
							В100, В107,
							B107, B113,
							C101,
							C102
0.000	2.000	0.000	0.000	0.000	2.000	Paved parking	A109
0.000	0.000	0.000	0.000	34.108	34.108	Paved surface	A101,
							A102,
							A103,
							A104,
							A105,
							A106,
							A107,
							A108,
							B101,
							B102, B103,
							B103, B104,
							B104, B105,
							B106,
							B108,
							B109,
							B110,
							B111,
							B112,
							B113,
							B115,
							B116,
							B117,
							B118,
							C101,
							C102,
							C103,
							D102

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014 Page 6

Ground Covers (all nodes) (continued)

	ISG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
	acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
	0.000	0.000	0.000	0.000	0.331	0.331	Rock Outcrop/Ledge	C102,
								C103
	0.000	0.857	0.000	0.000	0.000	0.857	Roofs	A109
	0.000	0.000	1.006	0.000	0.000	1.006	Sand Trap	A104,
								A105,
								B101,
								B102,
								B104,
								B109, B115
	2.070	0.160	0.000	0.000	0.000	2.230	Sand trap	A101,
	2.070	0.100	0.000	0.000	0.000	2.230	Sanu trap	A101, A103,
								A104,
								A105,
								B101,
								B102,
								B112,
								B115
	0.000	0.000	0.000	0.000	13.938	13.938	Water Surface	A102,
								A103,
								A104,
								A105,
								A107,
								B101,
								B102,
								B109,
								B111,
								B112,
								B116,
								C102
1	7.308	14.630	52.704	266.653	0.000	351.295	Woods, Good	A101,
								A102,
								A103,
								A104,
								A105,
								A106,
								A107,
								A108,
								A109,
								B101, B102,
								B102, B103,
								B103, B104,
								B104, B105,
								B106,
								B107,
								= ,

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014 Page 7

Ground Covers (all nodes) (continued)

187.385	43.486	203.361	289.353	66.870	790.455	TOTAL AREA	
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment

Printed 7/2/2014 Page 8

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
		, ,	. ,		, ,	0.040	, ,	, ,	`
1	A103	0.00	0.00	1,520.0	0.0690	0.012	30.0	0.0	0.0
2	B101	0.00	0.00	545.0	0.1000	0.012	36.0	0.0	0.0
3	B103	0.00	0.00	1,243.0	0.0670	0.012	36.0	0.0	0.0
4	B104	0.00	0.00	1,035.0	0.0350	0.012	36.0	0.0	0.0
5	B105	0.00	0.00	900.0	0.0400	0.012	36.0	0.0	0.0
6	B108	0.00	0.00	725.0	0.1640	0.012	36.0	0.0	0.0
7	B109	0.00	0.00	100.0	0.2800	0.012	36.0	0.0	0.0
8	B110	0.00	0.00	715.0	0.0360	0.024	24.0	0.0	0.0
9	B113	0.00	0.00	436.0	0.0700	0.015	15.0	0.0	0.0
10	36" Pipe	635.00	571.00	935.0	0.0684	0.015	36.0	0.0	0.0
11	42"Pipe	602.00	535.00	520.0	0.1288	0.015	42.0	0.0	0.0
12	104A	507.70	507.30	20.0	0.0200	0.025	12.0	0.0	0.0
13	105A	572.90	572.00	20.0	0.0450	0.025	18.0	0.0	0.0
14	106A	716.70	686.00	133.0	0.2308	0.025	36.0	0.0	0.0
15	107A	619.80	607.40	145.0	0.0855	0.010	24.0	0.0	0.0
16	108A	608.80	606.90	45.0	0.0422	0.025	36.0	0.0	0.0
17	SWM 7A	805.00	804.00	40.0	0.0250	0.015	15.0	0.0	0.0
18	SWM1	512.00	510.00	57.0	0.0351	0.012	3.0	0.0	0.0
19	SWM10	606.00	605.50	60.0	0.0083	0.012	15.0	0.0	0.0
20	SWM2	498.00	496.00	100.0	0.0200	0.024	6.0	0.0	0.0
21	SWM4	510.00	505.50	250.0	0.0180	0.020	36.0	0.0	0.0
22	SWM5	516.00	515.00	90.0	0.0111	0.015	5.0	0.0	0.0
23	SWM5	512.00	505.00	270.0	0.0259	0.020	30.0	0.0	0.0
24	SWM6	500.00	498.50	135.0	0.0111	0.012	8.0	0.0	0.0
25	SWM6	501.50	500.00	105.0	0.0143	0.012	18.0	0.0	0.0
26	SWM7	740.00	739.00	60.0	0.0167	0.012	30.0	0.0	0.0
27	SWM8	650.00	648.00	90.0	0.0222	0.010	36.0	0.0	0.0
28	WF	520.00	513.00	225.0	0.0311	0.015	36.0	0.0	0.0

Type III 24-hr 100-Year Rainfall=8.00", la/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 9

Time span=0.00-60.00 hrs, dt=0.02 hrs, 3001 points x 3
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment A101: A101	Runoff Area=21.492 ac 4.36% Impervious Runoff Depth=1.45" Flow Length=1,320' Tc=20.2 min CN=48 Runoff=16.54 cfs 2.593 af
Subcatchment A102: A102	Runoff Area=4.590 ac 29.85% Impervious Runoff Depth=5.52" Flow Length=530' Tc=15.8 min CN=81 Runoff=22.16 cfs 2.112 af
Subcatchment A103: A103	Runoff Area=57.467 ac 18.55% Impervious Runoff Depth=2.72" Flow Length=2,529' Tc=22.2 min CN=59 Runoff=111.51 cfs 13.025 af
Subcatchment A104: A104	Runoff Area=29.922 ac 5.68% Impervious Runoff Depth=1.34" Flow Length=1,871' Tc=21.8 min CN=47 Runoff=19.75 cfs 3.344 af
Subcatchment A105: A105	Runoff Area=26.522 ac 10.56% Impervious Runoff Depth=2.97" Flow Length=1,484' Tc=19.3 min CN=61 Runoff=60.91 cfs 6.553 af
Subcatchment A106: A106	Runoff Area=10.791 ac 11.31% Impervious Runoff Depth=5.00" Flow Length=1,260' Tc=26.7 min CN=77 Runoff=38.35 cfs 4.497 af
Subcatchment A107: A107	Runoff Area=79.700 ac 2.24% Impervious Runoff Depth=4.61" Flow Length=3,685' Tc=61.0 min CN=74 Runoff=171.28 cfs 30.636 af
Subcatchment A108: A108	Runoff Area=5.527 ac 2.32% Impervious Runoff Depth=2.48" Flow Length=1,235' Tc=30.1 min CN=57 Runoff=8.33 cfs 1.141 af
Subcatchment A109: A109	Runoff Area=15.712 ac 18.18% Impervious Runoff Depth=4.48" Flow Length=1,315' Tc=33.2 min CN=73 Runoff=45.35 cfs 5.871 af
Subcatchment B101: B101	Runoff Area=56.627 ac 6.87% Impervious Runoff Depth=3.09" Flow Length=2,334' Tc=36.7 min CN=62 Runoff=102.85 cfs 14.575 af
Subcatchment B102: B102	Runoff Area=41.568 ac 1.26% Impervious Runoff Depth=2.84" Flow Length=955' Tc=20.3 min CN=60 Runoff=88.66 cfs 9.845 af
Subcatchment B103: B103	Runoff Area=22.950 ac 5.23% Impervious Runoff Depth=5.26" Flow Length=2,127' Tc=38.5 min CN=79 Runoff=72.03 cfs 10.061 af
Subcatchment B104: B104	Runoff Area=24.602 ac 14.51% Impervious Runoff Depth=4.87" Flow Length=3,620' Tc=24.7 min CN=76 Runoff=88.17 cfs 9.987 af
Subcatchment B105: B105	Runoff Area=24.733 ac 4.33% Impervious Runoff Depth=5.13" Flow Length=2,606' Tc=36.4 min CN=78 Runoff=78.04 cfs 10.575 af
Subcatchment B106: B106	Runoff Area=118.111 ac 1.03% Impervious Runoff Depth=4.87" Flow Length=5,409' Tc=85.7 min CN=76 Runoff=214.98 cfs 47.947 af
Subcatchment B107: B107	Runoff Area=14.330 ac 0.00% Impervious Runoff Depth=5.00" Flow Length=907' Tc=37.9 min CN=77 Runoff=43.23 cfs 5.972 af

29011.00 Proposed_FINAL	Type III 24-hr 100-Year Rainfall=8.00", la/S=0.30
-------------------------	---

Subcatchment B108: B108	Runoff Area=42.121 ac 6.08% Impervious Runoff Depth=5.00" Flow Length=2,038' Tc=32.2 min CN=77 Runoff=137.25 cfs 17.554 af
Subcatchment B109: B109	Runoff Area=34.539 ac 8.27% Impervious Runoff Depth=5.00" Flow Length=1,371' Tc=24.9 min CN=77 Runoff=126.36 cfs 14.394 af
Subcatchment B110: B110	Runoff Area=6.622 ac 45.47% Impervious Runoff Depth=6.04" Flow Length=936' Tc=11.9 min CN=85 Runoff=38.12 cfs 3.335 af
Subcatchment B111: B111	Runoff Area=6.162 ac 18.97% Impervious Runoff Depth=3.21" Flow Length=516' Tc=6.8 min CN=63 Runoff=22.36 cfs 1.650 af
Subcatchment B112: B112	Runoff Area=39.484 ac 29.38% Impervious Runoff Depth=3.34" Flow Length=989' Tc=15.8 min CN=64 Runoff=113.49 cfs 10.983 af
Subcatchment B113: B113	Runoff Area=5.540 ac 15.56% Impervious Runoff Depth=2.36" Flow Length=836' Tc=14.0 min CN=56 Runoff=10.63 cfs 1.089 af
Subcatchment B115: B115	Runoff Area=13.073 ac 9.68% Impervious Runoff Depth=2.60" Flow Length=1,419' Tc=11.1 min CN=58 Runoff=31.27 cfs 2.831 af
Subcatchment B116: B116	Runoff Area=2.600 ac 30.58% Impervious Runoff Depth=2.48" Tc=6.0 min CN=57 Runoff=6.97 cfs 0.537 af
Subcatchment B117: B117	Runoff Area=7.158 ac 31.99% Impervious Runoff Depth=2.60" Tc=6.0 min CN=58 Runoff=20.47 cfs 1.550 af
Subcatchment B118: B118	Runoff Area=2.551 ac 42.77% Impervious Runoff Depth=3.34" Tc=6.0 min CN=64 Runoff=9.95 cfs 0.710 af
Subcatchment C101: C101	Runoff Area=20.871 ac 4.93% Impervious Runoff Depth=2.01" Flow Length=1,500' Tc=31.9 min CN=53 Runoff=22.76 cfs 3.490 af
Subcatchment C102: C102	Runoff Area=40.074 ac 2.80% Impervious Runoff Depth=3.34" Flow Length=2,597' Tc=45.5 min CN=64 Runoff=71.30 cfs 11.147 af
Subcatchment C103: C103	Runoff Area=7.416 ac 24.41% Impervious Runoff Depth=2.12" Flow Length=689' Tc=17.5 min CN=54 Runoff=11.19 cfs 1.312 af
Subcatchment D101: D101	Runoff Area=6.254 ac 0.00% Impervious Runoff Depth=5.00" Flow Length=1,036' Tc=26.0 min CN=77 Runoff=22.47 cfs 2.606 af

Subcatchment D102: D102 Runoff Area=0.346 ac 75.72% Impervious Runoff Depth=7.48" Tc=6.0 min CN=96 Runoff=2.69 cfs 0.216 af

Subcatchment Ocerlook (P1): Overlook

Runoff Area=1.000 ac 0.00% Impervious Runoff Depth=5.00"

Flow Length=176' Tc=7.5 min CN=77 Runoff=5.65 cfs 0.417 af

Reach 36" Pipe: 36" PipeAvg. Flow Depth=1.17' Max Vel=19.07 fps Inflow=48.77 cfs 6.609 af 36.0" Round Pipe n=0.015 L=935.0' S=0.0684 '/' Capacity=151.23 cfs Outflow=48.72 cfs 6.609 af

Reach 42"Pipe: 42" PipeAvg. Flow Depth=2.06' Max Vel=34.65 fps Inflow=203.91 cfs 37.646 af 42.0" Round Pipe n=0.015 L=520.0' S=0.1288 '/' Capacity=312.99 cfs Outflow=203.93 cfs 37.646 af

Printed 7/2/2014

Page 11

Reach A105R: Thru A103 Avg. Flow Depth=2.11' Max Vel=8.17 fps Inflow=106.52 cfs 13.146 af

 $n = 0.050 \quad L = 1,170.0' \quad S = 0.0564 \; \text{$^{\prime}$} \quad Capacity = 150.86 \; cfs \quad Outflow = 105.31 \; cfs \quad 13.145 \; afs \quad Capacity = 150.86 \; cfs \quad Outflow = 105.31 \; cfs \quad Capacity = 150.86 \; cfs \quad Capacity = 150.86 \; cfs \quad Capacity = 150.86 \; cfs \quad Capacity = 150.86 \; cfs \quad Capacity = 105.31 \; cfs \quad Capacity = 150.86 \; cfs \quad Capacity = 105.31 \; cfs \quad Capacity = 150.86 \; cfs \quad Capacity = 105.31 \; cfs \quad Capacity = 150.86 \; cfs \quad Capacity = 105.31 \; cfs \quad Capacity = 150.86 \; cfs \quad Capacity = 105.31 \; cfs \quad Capacity = 150.86 \; cfs \quad Capacity = 105.31 \; cfs \quad Capacity = 105.31 \; cfs \quad Capacity = 150.86 \; cfs \quad Capacity = 105.31 \; cfs \quad Cap$

Reach B107R: Thru B103 Avg. Flow Depth=0.43' Max Vel=8.28 fps Inflow=31.60 cfs 5.696 af

n=0.050 L=938.0' S=0.4072 '/' Capacity=192.14 cfs Outflow=31.56 cfs 5.696 af

Reach B112R: Thru B102 Avg. Flow Depth=2.92' Max Vel=5.71 fps Inflow=189.74 cfs 89.406 af

n=0.050 L=600.0' S=0.0167 '/' Capacity=369.68 cfs Outflow=189.70 cfs 89.398 af

Pond 102C: Pond 102C Peak Elev=509.11' Storage=334,069 cf Inflow=71.30 cfs 11.147 af

Outflow=8.40 cfs 4.020 af

Pond 104A: Wetland D Peak Elev=508.17' Storage=10,904 cf Inflow=19.75 cfs 3.344 af

Primary=0.63 cfs 0.493 af Secondary=18.61 cfs 2.831 af Outflow=19.24 cfs 3.323 af

Pond 105A: Wetland H Peak Elev=575.36' Storage=68,605 cf Inflow=107.03 cfs 13.162 af

Primary=11.12 cfs 7.765 af Secondary=95.40 cfs 5.380 af Outflow=106.52 cfs 13.146 af

Pond 106A: 36" Culvert Peak Elev=720.25' Storage=173 cf Inflow=48.77 cfs 6.609 af

Primary=48.77 cfs 6.609 af Secondary=0.00 cfs 0.000 af Outflow=48.77 cfs 6.609 af

Pond 106B: Wetland J Peak Elev=527.22' Storage=25,661 cf Inflow=214.98 cfs 47.947 af

Outflow=214.87 cfs 47.947 af

Pond 107A: 24" Culvert Peak Elev=626.48' Storage=3,858 cf Inflow=198.70 cfs 36.504 af

Primary=45.08 cfs 22.847 af Secondary=153.63 cfs 13.658 af Outflow=198.71 cfs 36.504 af

Pond 107B: Wetland Peak Elev=973.04' Storage=66,447 cf Inflow=43.23 cfs 5.972 af

Outflow=31.60 cfs 5.696 af

Pond 108A: 36" Culvert Peak Elev=613.51' Storage=292 cf Inflow=158.84 cfs 14.799 af

Primary=60.96 cfs 9.062 af Secondary=97.86 cfs 5.737 af Outflow=158.83 cfs 14.799 af

Pond SWM 7A: SWM 7A (Phase 1) Peak Elev=811.41' Storage=3,299 cf Inflow=5.65 cfs 0.417 af

Outflow=4.56 cfs 0.417 af

Pond SWM1: SWM 1 Peak Elev=514.52' Storage=34,045 cf Inflow=72.88 cfs 14.575 af

Outflow=72.31 cfs 14.561 af

Pond SWM10: SWM #10 Peak Elev=609.50' Storage=0.080 af Inflow=2.69 cfs 0.216 af

Outflow=0.89 cfs 0.216 af

Pond SWM2: SWM2 Peak Elev=505.72' Storage=358,924 cf Inflow=341.07 cfs 47.706 af

Outflow=311.53 cfs 47.358 af

Pond SWM3try: SWM3 Peak Elev=510.77' Storage=1,474,835 cf Inflow=321.61 cfs 90.091 af

Outflow=189.74 cfs 89.406 af

Pond SWM4: SWM4 Peak Elev=519.05' Storage=118,746 cf Inflow=222.19 cfs 54.773 af

Primary=205.39 cfs 54.761 af Secondary=0.00 cfs 0.000 af Outflow=205.39 cfs 54.761 af

Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C

Printed 7/2/2014

HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Page 12

Pond SWM5: SWM5Peak Elev=521.52' Storage=197,776 cf Inflow=182.43 cfs 24.434 af Primary=0.67 cfs 1.847 af Secondary=125.35 cfs 21.709 af Tertiary=20.54 cfs 0.498 af Outflow=146.53 cfs 24.053 af

Pond SWM6: SWM6 Peak Elev=504.87' Storage=599,323 cf Inflow=215.85 cfs 26.171 af

Outflow=17.92 cfs 25.291 af

Pond SWM7: SWM7 Peak Elev=747.10' Storage=26,437 cf Inflow=22.16 cfs 2.112 af

Outflow=10.84 cfs 2.112 af

Pond SWM8: SWM8 Peak Elev=657.39' Storage=70,453 cf Inflow=45.35 cfs 5.871 af

Outflow=27.42 cfs 5.868 af

Pond WF: Water Feature Peak Elev=529.35' Storage=102,653 cf Inflow=102.85 cfs 14.575 af

Primary=62.30 cfs 14.331 af Secondary=10.57 cfs 0.244 af Outflow=72.88 cfs 14.575 af

Link A: Amenia Stream Inflow=239.79 cfs 68.853 af

Primary=239.79 cfs 68.853 af

Link B: Wetland Inflow=475.08 cfs 161.872 af

Primary=475.08 cfs 161.872 af

Link C: Culvert Inflow=31.13 cfs 8.822 af

Primary=31.13 cfs 8.822 af

Link D: Culvert Inflow=23.35 cfs 2.822 af

Primary=23.35 cfs 2.822 af

Link Overlook-A (P1): Overlook A (Phase 1) Inflow=4.56 cfs 0.417 af

Primary=4.56 cfs 0.417 af

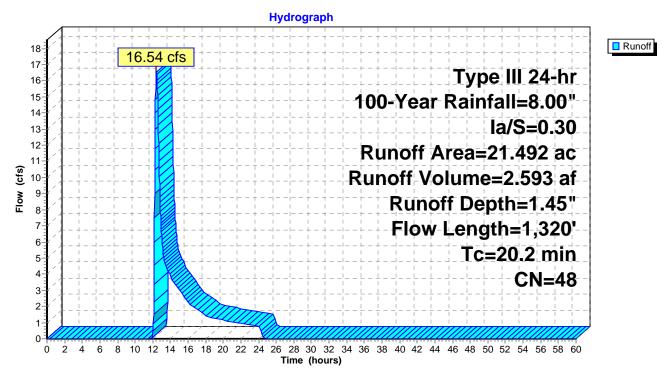
Total Runoff Area = 790.455 ac Runoff Volume = 252.558 af Average Runoff Depth = 3.83" 91.57% Pervious = 723.795 ac 8.43% Impervious = 66.660 ac

Printed 7/2/2014

Page 13

Summary for Subcatchment A101: A101

Runoff = 16.54 cfs @ 12.40 hrs, Volume= 2.593 af, Depth= 1.45"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area	(ac)	CN	l Desc	ription							
*	0.	015	98	Build	ling roof							
*	0.	921	98	3 Pave	aved surface							
*		000	96		avel surface							
*	0.000 98 Water Surface											
		290	39			over, Good,						
		490	61			over, Good,						
		050	74			over, Good,						
		000	80			over, Good,	, HSG D					
		270	30		ds, Good,							
		000	55		ds, Good,							
		000	70		ds, Good,							
*		000 426	77		ds, Good,							
*		030	30 30		trap, HS0							
*		000	30		d trap, HS0 d Trap, HS							
_		492	48		hted Aver							
		556	40									
	0.936				95.64% Pervious Area 4.36% Impervious Area							
	0.	330		7.50	70 IIIIpei vii	Jus Alea						
	Tc	Leng	ıth	Slope	Velocity	Capacity	Description					
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	·					
	9.6	1(00	0.1400	0.17		Sheet Flow,					
							Grass: Bermuda n= 0.410 P2= 3.50"					
	6.0	80	00	0.1000	2.21		Shallow Concentrated Flow,					
							Short Grass Pasture Kv= 7.0 fps					
	4.6	42	20	0.0480	1.53		Shallow Concentrated Flow,					
_							Short Grass Pasture Kv= 7.0 fps					
	20.2	1,32	20	Total								

Printed 7/2/2014

Page 14

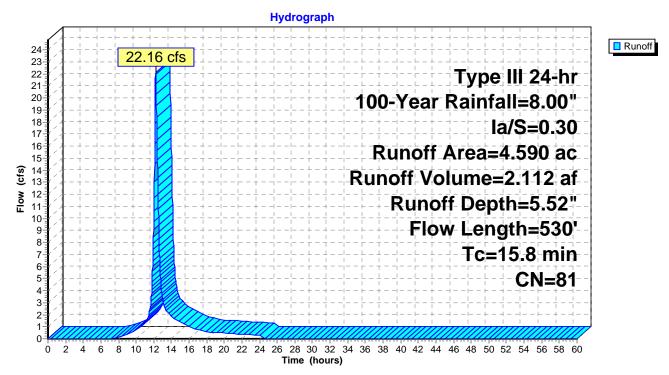
Subcatchment A101: A101

Printed 7/2/2014

Page 15

Summary for Subcatchment A102: A102

Runoff = 22.16 cfs @ 12.21 hrs, Volume= 2.112 af, Depth= 5.52"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area	(ac)	CN	Desc	cription							
*	0.	200	98	Build	ling roof							
*	1.	040	98	Pave	aved surface							
*	0.	000	96	Grav	Gravel surface							
*	0.130 98 Water Surface											
		000	39	>75%	% Grass co	over, Good,	, HSG A					
	0.	000	61	>75%	% Grass co	over, Good,	, HSG B					
	2.	970	74	>75%	% Grass co	over, Good,	, HSG C					
		000	80			over, Good,	, HSG D					
		000	30		ds, Good,							
		000	55		ds, Good,							
		250	70		ds, Good,							
		000	77		ds, Good,							
*		000	30		trap, HS0							
*		000	30		trap, HS0							
_		000	30		d Trap, HS							
		590	81		hted Aver	•						
		220		-	5% Pervio	us Area ⁄ious Area						
	1.	370										
	Тс	Lengtl	ո Տ	Slope	Velocity	Capacity	Description					
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	•					
	9.2	100	0.	1500	0.18		Sheet Flow,					
							Woods: Light underbrush n= 0.400 P2= 3.50"					
	1.1	50	0.	1000	0.79		Shallow Concentrated Flow,					
							Forest w/Heavy Litter Kv= 2.5 fps					
	8.0	130	0.	1700	2.89		Shallow Concentrated Flow,					
							Short Grass Pasture Kv= 7.0 fps					
	4.7	250	0.	1280	0.89		Shallow Concentrated Flow,					
							Forest w/Heavy Litter Kv= 2.5 fps					
	15.8	530) To	otal								

Printed 7/2/2014

Page 16

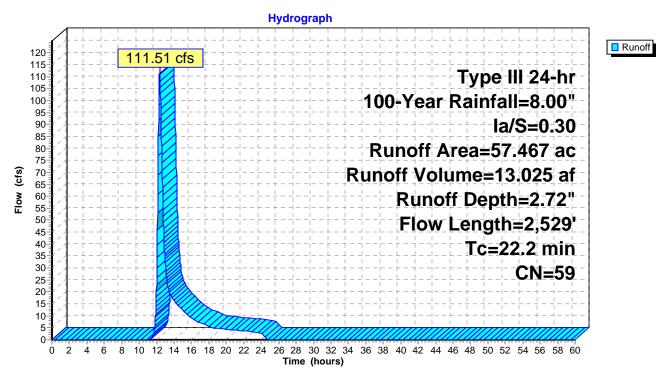
Subcatchment A102: A102

Printed 7/2/2014

Page 17

Summary for Subcatchment A103: A103

Runoff = 111.51 cfs @ 12.34 hrs, Volume= 13.025 af, Depth= 2.72"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area	(ac)	CN	Desc	cription						
*	2.	908	98	Build	Building roof						
*	6.	292	98	Pave	Paved surface						
*	0.	438	96	Grav	Gravel surface						
*	1.	461	98		er Surface						
	22.	890	39	>75%	% Grass co	over, Good	. HSG A				
		353	61			over, Good					
	8.	379	74			over, Good					
	0.	029	80			over, Good					
		112	30		ds, Good,		,				
	1.	620	55		ds, Good,						
	1.	505	70	Woo	ds, Good,	HSG C					
	1.	130	77	Woo	ds, Good,	HSG D					
*	0.	220	30	Sand	d trap, HS0	G A					
*	0.	130	30	Sand	trap, HS0	G B					
*	0.	000	30	Sand	d Trap, HS	GC					
	57.467 59 Weighted Average										
	46.	806		81.45% Pervious Area							
	10.	661		18.5	5% Imperv	vious Area					
	Tc	Length		Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	17.8	100	0.0	0300	0.09		Sheet Flow,				
							Grass: Bermuda n= 0.410 P2= 3.50"				
	2.2	355	5 0.	1430	2.65		Shallow Concentrated Flow,				
							Short Grass Pasture Kv= 7.0 fps				
	1.1	554	4 0.0	0890	8.24	98.89	Trap/Vee/Rect Channel Flow,				
							Bot.W=2.00' D=2.00' Z= 2.0 '/' Top.W=10.00'				
							n= 0.050				
	1.1	1,520	0.0	0690	23.78	116.72	Pipe Channel,				
							30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'				
_							n= 0.012				
	22.2	2,529) To	tal							

Printed 7/2/2014

Page 18

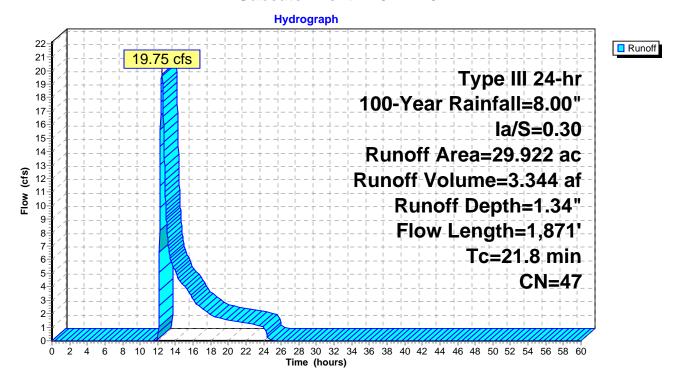
Subcatchment A103: A103

Printed 7/2/2014

Page 19

Summary for Subcatchment A104: A104

Runoff = 19.75 cfs @ 12.45 hrs, Volume= 3.344 af, Depth= 1.34"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area	(ac)	CN	N Desc	ription					
*	0.	000	98	Build	ling roof					
*	1.	270	98	B Pave	Paved surface					
*	0.	0.000 96 Gravel surface								
*										
	_	530	39			over, Good,				
		110	6′			over, Good,				
	3.	720	74			over, Good				
	_	000	80			over, Good	, HSG D			
		028	30		ds, Good,					
		017	55		ds, Good,					
		100	70		ds, Good,					
		000	77		ds, Good,					
*		635	30		trap, HS0					
^ +		000	30		trap, HS0					
_		082	30		l Trap, HS					
		922	47		hted Aver					
	28.222 94.32% Pervious Area									
	1.700 5.68% Impervious <i>A</i>					ous Area				
	Тс	Leng	ıth	Slope	Velocity	Capacity	Description			
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description			
_	7.8			0.2400	0.22	(6.6)	Sheet Flow,			
	7.0	10	00	0.2400	0.22		Grass: Bermuda n= 0.410 P2= 3.50"			
	9.7	1,23	31	0.0920	2.12		Shallow Concentrated Flow,			
	0.7	.,_\		0.0020	2.12		Short Grass Pasture Kv= 7.0 fps			
	4.3	54	40	0.0900	2.10		Shallow Concentrated Flow,			
		_	-		-		Short Grass Pasture Kv= 7.0 fps			
	21.8	1,87	71	Total			·			

Printed 7/2/2014

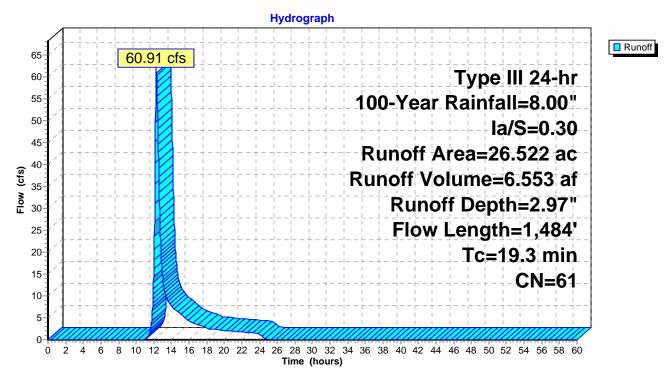
Page 20

Subcatchment A104: A104

Printed 7/2/2014

Page 21

Summary for Subcatchment A105: A105


Runoff = 60.91 cfs @ 12.29 hrs, Volume= 6.553 af, Depth= 2.97"

	Area	(ac)	CN	Desc	cription					
*	0.	842	98	Build	ling roof					
*	1.	458	98	Pave	ed surface					
*	0.	000	96	Grav	el surface					
* 0.500 98 Water Surface										
	_	832	39	, HSG A						
		000	61			over, Good,				
		080	74			over, Good,				
	_	000	80			over, Good,	HSG D			
		094	30		ds, Good,					
		000	55		ds, Good,					
		565	70		ds, Good,					
		000	77		ds, Good,					
*		145	30		trap, HS					
*		000	30		trap, HS					
_		006	30		d Trap, HS					
		522	61		hted Aver	•				
		722			4% Pervio					
	2.	800		10.5	6% Imperv	ious Area				
	т.		41-	01	\/alaa!t	0	Description			
	Tc	Leng		Slope	Velocity	Capacity	Description			
_	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	OL 4 El			
	9.2	1(0 00	.1500	0.18		Sheet Flow,			
	0.0	20)	4000	0.40		Woods: Light underbrush n= 0.400 P2= 3.50"			
	3.0	38	95 0	.1920	2.19		Shallow Concentrated Flow,			
	7 1	00	20 0	1100	2 22		Woodland Kv= 5.0 fps			
	7.1	90	39 0	.1100	2.32		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			
_	40.0	4 4		'-4-l			Short Grass Pasture NV= 1.0 Ips			
	19.3	1,48	34 I	otal						

Printed 7/2/2014

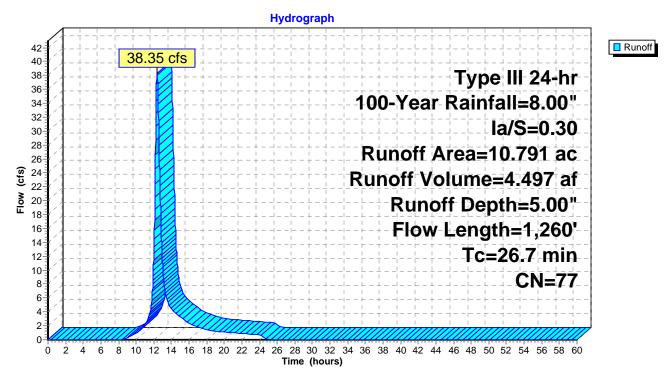
Page 22

Subcatchment A105: A105

Printed 7/2/2014

Page 23

Summary for Subcatchment A106: A106


Runoff = 38.35 cfs @ 12.37 hrs, Volume= 4.497 af, Depth= 5.00"

	Area	(ac)	CI	N Desc	ription									
*	0.	000	9	8 Build	ling roof									
*	1.	220	9	8 Pave	Paved surface									
*	0.000 96 Gravel surface													
*	0.000 96 Water Surface													
	0.000 39 >75% Grass cover, Good, HSG A													
		078	6			over, Good								
		210	7			over, Good								
		190	8			over, Good	, HSG D							
		000	3		ds, Good,									
		100	5		ds, Good,									
		390	7		ds, Good,									
		603	7		ds, Good,									
*		000	3		trap, HS									
*		000	3		trap, HS									
_		000	3		Trap, HS									
		791	7	_	hted Aver	0								
	_	571			88.69% Pervious Area 11.31% Impervious Area									
	1.	220		11.3	1% Imper	lious Area								
	Тс	Leng	ıth	Slope	Velocity	Capacity	Description							
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description							
_	16.0)())()	0.1500	0.10	(013)	Sheet Flow,							
	10.0	11	JU	0.1300	0.10		Woods: Dense underbrush n= 0.800 P2= 3.50"							
	10.1	50	00	0.1100	0.83		Shallow Concentrated Flow,							
	10.1	3(00	0.1100	0.00		Forest w/Heavy Litter Kv= 2.5 fps							
	0.6	66	60	0.3000	17.87	321.67	Trap/Vee/Rect Channel Flow,							
	0.0	0.		0.0000		021.01	Bot.W=3.00' D=2.00' Z= 3.0 '/' Top.W=15.00'							
							n= 0.050							
	26.7	1,20	60	Total										

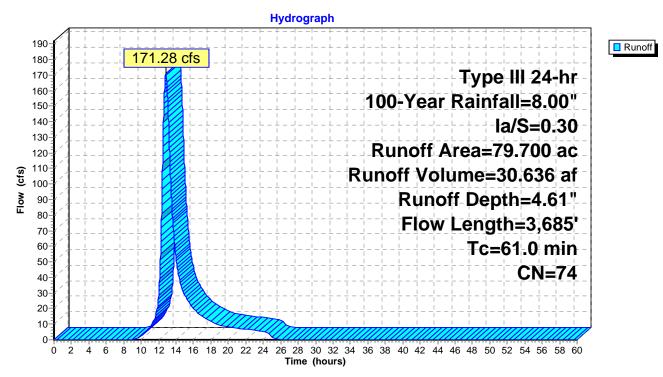
Printed 7/2/2014

Page 24

Subcatchment A106: A106

Printed 7/2/2014

Page 25


Summary for Subcatchment A107: A107

Runoff = 171.28 cfs @ 12.82 hrs, Volume= 30.636 af, Depth= 4.61"

	Area	(ac)	CN	Desc	ription		
*	0.	340	98	Build	ling roof		
*	1.	314	98	Pave	ed surface		
*	0.	071	96	Grav	el surface		
*	0.	130	98	Wate	er Surface		
	0.	000	39	>75%	6 Grass co	over, Good	, HSG A
	6.	390	61	>75%	√ Grass co √	over, Good	, HSG B
	4.	750	74	>75%	√ Grass co √	over, Good	, HSG C
		470	80			over, Good	, HSG D
		000	30		ds, Good,		
		845	55		ds, Good,		
		580	70		ds, Good,		
		810	77		ds, Good,		
*		000	30		trap, HS0		
*		000	30		trap, HS0		
<u>*</u>		000	30		Trap, HS		
		700	74		hted Aver		
		916		-	6% Pervio		
	1.	784		2.24	% Impervi	ous Area	
	Тс	Length		lope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	Description
	20.5	100		0800	0.08	(013)	Sheet Flow,
	20.5	100	0.0	0000	0.06		Woods: Dense underbrush n= 0.800 P2= 3.50"
	3.7	230	Λ 1	700	1.03		Shallow Concentrated Flow,
	5.7	200	0.1	700	1.00		Forest w/Heavy Litter Kv= 2.5 fps
	15.0	450	0.0)400	0.50		Shallow Concentrated Flow,
	10.0	400	0.0	7-00	0.00		Forest w/Heavy Litter Kv= 2.5 fps
	18.0	1,210	0.2	2000	1.12		Shallow Concentrated Flow,
	10.0	1,210	0.2	-000	1.12		Forest w/Heavy Litter Kv= 2.5 fps
	2.3	1,050	0.1	300	7.68	25.61	Parabolic Channel,
		.,000				20.01	W=5.00' D=1.00' Area=3.3 sf Perim=5.5' n= 0.050
	1.5	645	0.1	100	7.07	23.56	Parabolic Channel,
						_5.30	W=5.00' D=1.00' Area=3.3 sf Perim=5.5' n= 0.050
_	61.0	3,685	To	tal			
	00	5,000					

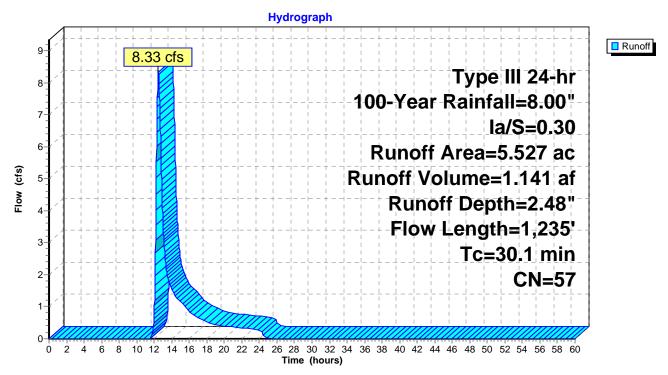
Printed 7/2/2014 Page 26

Subcatchment A107: A107

Printed 7/2/2014

Page 27

Summary for Subcatchment A108: A108


Runoff = 8.33 cfs @ 12.48 hrs, Volume= 1.141 af, Depth= 2.48"

_	Area	(ac)	CN	Desc	cription						
*	0.	040	98	Build	ling roof						
*	0.	880	98	Pave	ed surface						
*	0.	0.049 96 Gravel surface									
*	0.000 96 Water Surface										
	0.000 39 >75% Grass cover, Good, HSG A										
		630	61			over, Good,					
		000	74			over, Good,					
		000	80			over, Good,	HSG D				
		000	30		ds, Good,						
		720	55		ds, Good,						
		000	70		ds, Good,						
		000	77		ds, Good,						
*		000	30		trap, HS0						
*		000	30		trap, HS0						
*		000	30		d Trap, HS						
		527	57		hted Aver						
		399			8% Pervio						
	0.	128		2.32	% Impervi	ous Area					
	-			01							
	Tc	Leng		Slope	Velocity	Capacity	Description				
_	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)					
	14.2	10	00 0	0.2000	0.12		Sheet Flow,				
					4.0=		Woods: Dense underbrush n= 0.800 P2= 3.50"				
	12.7	98	50 ().2500	1.25		Shallow Concentrated Flow,				
	4.4	,	. .		4.07		Forest w/Heavy Litter Kv= 2.5 fps				
	1.1	8	35 C	0.2600	1.27		Shallow Concentrated Flow,				
	0.4	4.		1000	0.70		Forest w/Heavy Litter Kv= 2.5 fps				
	2.1	1(00 0	0.1000	0.79		Shallow Concentrated Flow,				
_	00.4	4.64					Forest w/Heavy Litter Kv= 2.5 fps				
	30.1	1,23	35 7	Γotal							

Printed 7/2/2014

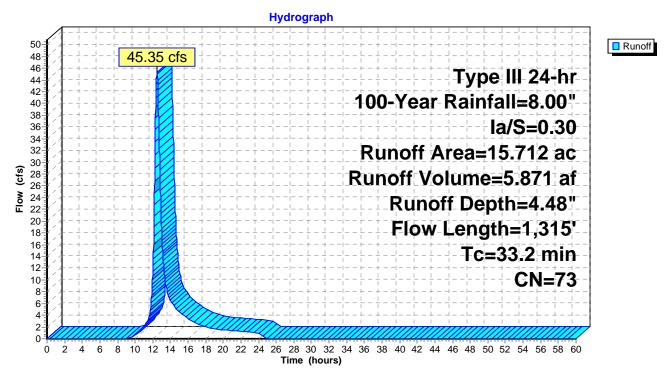
Page 28

Subcatchment A108: A108

Printed 7/2/2014

Page 29

Summary for Subcatchment A109: A109


Runoff = 45.35 cfs @ 12.46 hrs, Volume= 5.871 af, Depth= 4.48"

Area	(ac) C	N Des	cription		
0	.857	8 Roo	fs, HSG B		
5	.730	, HSG B			
4	, HSG C				
0	.592 8			over, Good	, HSG D
2			ed parking		
			ds, Good,		
			ds, Good,		
		77 Woo	ds, Good,	HSG D	
			ghted Aver		
	.855		2% Pervio		
2	.857	18.1	8% Imperv	/ious Area	
-	1 1	01	Mala 20	0 11	Describetor
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
22.3	100	0.0650	0.07		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 3.50"
2.0	388	0.2200	3.28		Shallow Concentrated Flow,
0.7	407	0.4400	0.00		Short Grass Pasture Kv= 7.0 fps
2.7	427	0.1400	2.62		Shallow Concentrated Flow,
0.0	400	0.4050	4.00		Short Grass Pasture Kv= 7.0 fps
6.2	400	0.1850	1.08		Shallow Concentrated Flow,
	4.045	T - 1 - 1			Forest w/Heavy Litter Kv= 2.5 fps
33.2	1,315	Total			

Printed 7/2/2014

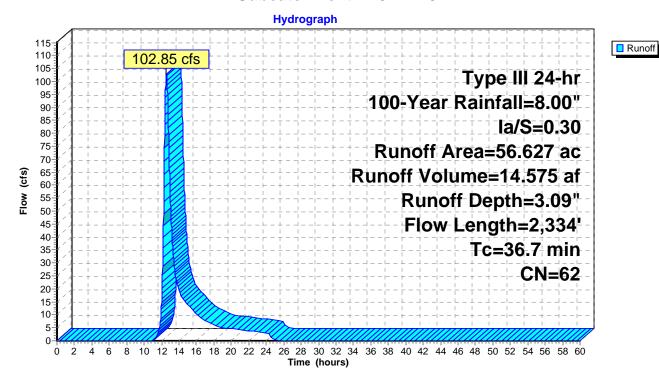
Page 30

Subcatchment A109: A109

Printed 7/2/2014

Page 31

Summary for Subcatchment B101: B101


Runoff = 102.85 cfs @ 12.55 hrs, Volume= 14.575 af, Depth= 3.09"

_	Area	(ac) (CN Des	cription								
*	0.	985	98 Buil	ding roof								
*	2.	491	98 Pav	ed surface								
*	0.	439	96 Gra	vel surface								
*	0.	412	98 Wat	Water Surface								
	21.	653	39 >75	>75% Grass cover, Good, HSG A								
	0.	000	61 >75	% Grass co	over, Good	, HSG B						
	14.	370	74 >75	% Grass co	over, Good	, HSG C						
	0.	555	80 >75	% Grass c	over, Good	, HSG D						
	0.	553	30 Wo	ods, Good,	HSG A							
	0.	000	55 Wo	ods, Good,	HSG B							
	8.	567	70 Wo	ods, Good,	HSG C							
	6.	416	77 Wo	ods, Good,	HSG D							
*	0.			id trap, HS	G A							
*	0.	000	30 Sar	id trap, HS	G B							
*	0.	044	<u>30 Sar</u>	id Trap, HS	G C							
	56.	627	62 Wei	ghted Aver	age							
	52.	739	93.1	13% Pervio	us Area							
	3.	888	6.87	7% Impervi	ous Area							
	Tc	Length			Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	15.6	50	0.0400	0.05		Sheet Flow,						
						Woods: Dense underbrush n= 0.800 P2= 3.50"						
	8.2	50	0.2000	0.10		Sheet Flow,						
						Woods: Dense underbrush n= 0.800 P2= 3.50"						
	4.6	511	0.5600	1.87		Shallow Concentrated Flow,						
						Forest w/Heavy Litter Kv= 2.5 fps						
	6.9	524	0.2600	1.27		Shallow Concentrated Flow,						
						Forest w/Heavy Litter Kv= 2.5 fps						
	8.0	554	0.1520	12.29	196.62	Trap/Vee/Rect Channel Flow,						
						Bot.W=2.00' D=2.00' Z= 3.0 '/' Top.W=14.00'						
						n= 0.050						
	0.3	100	0.0300	5.47	65.68	Trap/Vee/Rect Channel Flow,						
						Bot.W=2.00' D=2.00' Z= 2.0 '/' Top.W=10.00'						
						n= 0.050						
	0.3	545	0.1000	32.33	228.50	Pipe Channel,						
						36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'						
_						n= 0.012						
	36.7	2,334	Total									

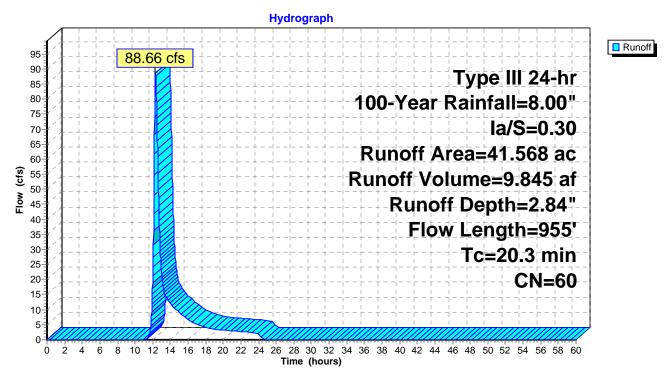
Printed 7/2/2014

Page 32

Subcatchment B101: B101

Printed 7/2/2014

Page 33


Summary for Subcatchment B102: B102

Runoff = 88.66 cfs @ 12.30 hrs, Volume= 9.845 af, Depth= 2.84"

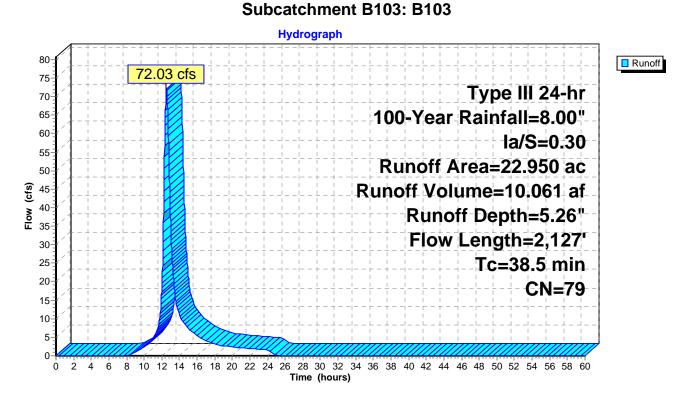
Area	(ac)	CN	Desc	Description						
0.	000	98	Build	ling roof						
0.	516	98	Pave	ed surface						
0.	210	96	Grav	el surface						
0.	009	98	Wate	er Surface						
7.	476	39	>75%	6 Grass co	over, Good,	, HSG A				
0.	464	61	>75%	⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟩ ⟨ Grass co ⟨ Grass co ⟩	over, Good,	, HSG B				
		74	>75%	⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟩ ⟨ Grass co ⟨ Grass co ⟩	over, Good,	, HSG C				
_	_	80				, HSG D				
				, ,						
		77		, ,						
		60	_	,	•					
0.	525		1.26	% Impervio	ous Area					
To	Longt	, ,	Slope	Volocity	Canacity	Description				
			•	•		Description				
					(013)	Shoot Flow				
14.5	100	<i>J</i> 0.	0500	0.11		Sheet Flow, Grass: Bermuda n= 0.410 P2= 3.50"				
3 0	15	7 0	UBSU	2.02		Shallow Concentrated Flow,				
3.0	45	0.	0030	2.02		Short Grass Pasture Kv= 7.0 fps				
13	80	n n	1750	1.05		Shallow Concentrated Flow,				
1.5	O.	<i>)</i> 0.	1730	1.03		Forest w/Heavy Litter Kv= 2.5 fps				
0.7	319	3 0	0250	7 10	287 53	Parabolic Channel,				
0.7	510	<i>.</i>	0200	7.13	207.00	W=20.00' D=3.00' Area=40.0 sf Perim=21.1' n= 0.050				
20.3	954	5 T	ntal			1. 2000 D -0.00 / 1000 - 10.0 01 1 01111-2111 11-0.000				
	0. 0. 0. 7. 0. 12. 0. 6. 0. 5. 7. 0. 41. 41. 0. Tc (min) 14.5 3.8 1.3 0.7	0.000 0.516 0.210 0.009 7.476 0.464 12.033 0.764 6.808 0.000 5.496 7.405 0.060 0.000 0.327 41.568 41.043 0.525 Tc Length (min) (feet 14.5 100 3.8 457 1.3 80 0.7 318	0.000 98 0.516 98 0.210 96 0.009 98 7.476 39 0.464 61 12.033 74 0.764 80 6.808 30 0.000 55 5.496 70 7.405 77 0.060 30 0.000 30 0.327 30 41.568 60 41.043 0.525 Tc Length (min) (feet) 14.5 100 0. 3.8 457 0. 1.3 80 0. 0.7 318 0.	0.000 98 Build 0.516 98 Pave 0.210 96 Grav 0.009 98 Wate 7.476 39 >75% 0.464 61 >75% 12.033 74 >75% 0.764 80 >75% 6.808 30 Woo 0.000 55 Woo 5.496 70 Woo 7.405 77 Woo 0.060 30 Sand 0.000 30 Sand 0.000 30 Sand 0.327 30 Sand 41.568 60 Weig 41.043 98.74 0.525 1.266 Tc Length Slope (min) (feet) (ft/ft) 14.5 100 0.0500 3.8 457 0.0830 1.3 80 0.1750 0.7 318 0.0250	0.000 98 Building roof 0.516 98 Paved surface 0.210 96 Gravel surface 0.009 98 Water Surface 7.476 39 >75% Grass commoder 0.464 61 >75% Grass commoder 12.033 74 >75% Grass commoder 0.764 80 >75% Grass commoder 6.808 30 Woods, Good, 0.000 55 Woods, Good, 7.405 77 Woods, Good, 0.060 30 Sand trap, HSO 0.000 30 Sand Trap, HSO 0.327 30 Sand Trap, HSO 0.327 30 Sand Trap, HSO 0.327 30 Sand Trap, HSO 0.525 1.26% Imperviolate Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 14.5 100 0.0500 0.11 3.8 457 0.0830 2.02 <t< td=""><td>0.000 98 Building roof 0.516 98 Paved surface 0.210 96 Gravel surface 0.009 98 Water Surface 7.476 39 >75% Grass cover, Good 0.464 61 >75% Grass cover, Good 12.033 74 >75% Grass cover, Good 0.764 80 >75% Grass cover, Good 0.764 80 >75% Grass cover, Good 0.764 80 >75% Grass cover, Good 0.88 30 Woods, Good, HSG A 0.000 55 Woods, Good, HSG B 5.496 70 Woods, Good, HSG D 0.060 30 Sand trap, HSG A 0.000 30 Sand trap, HSG B 0.327 30 Sand Trap, HSG C 41.568 60 Weighted Average 41.043 98.74% Pervious Area 0.525 1.26% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/</td></t<>	0.000 98 Building roof 0.516 98 Paved surface 0.210 96 Gravel surface 0.009 98 Water Surface 7.476 39 >75% Grass cover, Good 0.464 61 >75% Grass cover, Good 12.033 74 >75% Grass cover, Good 0.764 80 >75% Grass cover, Good 0.764 80 >75% Grass cover, Good 0.764 80 >75% Grass cover, Good 0.88 30 Woods, Good, HSG A 0.000 55 Woods, Good, HSG B 5.496 70 Woods, Good, HSG D 0.060 30 Sand trap, HSG A 0.000 30 Sand trap, HSG B 0.327 30 Sand Trap, HSG C 41.568 60 Weighted Average 41.043 98.74% Pervious Area 0.525 1.26% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/				

Printed 7/2/2014 Page 34

Subcatchment B102: B102

Printed 7/2/2014

Page 35


Summary for Subcatchment B103: B103

Runoff = 72.03 cfs @ 12.53 hrs, Volume= 10.061 af, Depth= 5.26"

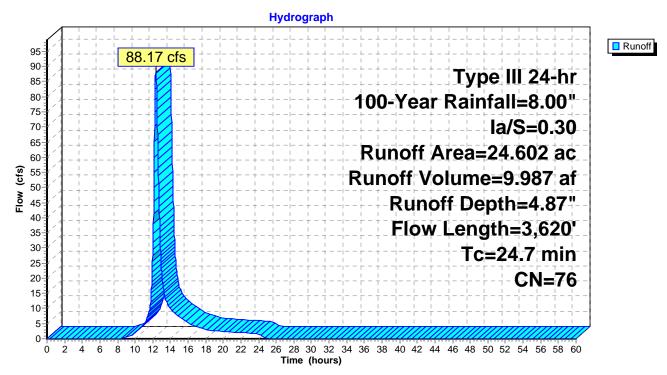
	Area	(ac)	CI	N Desc	cription									
*	0.	200	9	8 Build	ling roof									
*	1.	000	9	8 Pave	aved surface									
*	0.	123	9	6 Grav	ravel surface									
*	0.	000	000 98 Water Surface											
	0.000 39 >75% Grass cover, Good, HSG A													
	0.	000	6			over, Good,								
	0.	674	7	4 >759	% Grass co	over, Good,	, HSG C							
		453	8			over, Good,	, HSG D							
		000	3		ds, Good,									
		000	5		ds, Good,									
		000	7		ds, Good,									
		500	7		ds, Good,									
*		000	3		trap, HS									
*		000	3		trap, HS									
*		000	3		d Trap, HS									
		950	7		hted Aver	0								
		750			94.77% Pervious Area									
	1.	200		5.23	5.23% Impervious Area									
	т.	1	.41.	Olana.	\/alaa!t	0	Description							
	Tc	Leng		Slope	Velocity	Capacity	Description							
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	OL 4 El							
	30.4	10	00	0.0300	0.05		Sheet Flow,							
	7.3	7	0.4	0.5400	1 70		Woods: Dense underbrush n= 0.800 P2= 3.50"							
	7.3	7 6	34	0.5100	1.79		Shallow Concentrated Flow,							
	0.8	1,24	12	0.0670	26.46	187.03	Forest w/Heavy Litter Kv= 2.5 fps							
	0.0	1,2	+3	0.0670	20.40	167.03	Pipe Channel , 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'							
							n= 0.012							
	38.5	2,12	27	Total										

Printed 7/2/2014 Page 36

L (D100 D100

Printed 7/2/2014

Page 37


Summary for Subcatchment B104: B104

Runoff = 88.17 cfs @ 12.34 hrs, Volume= 9.987 af, Depth= 4.87"

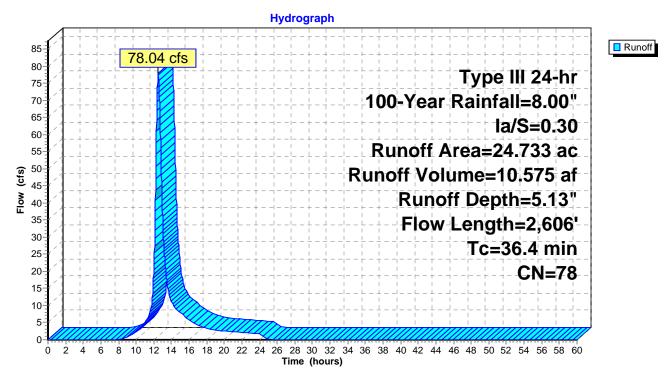
	Area	(ac)	CN	Desc	ription							
*	1.	255	98	Build	ling roof							
*	2.	315	98	Pave	ed surface							
*	0.	016	96	Grav	evel surface							
*	0.	000	98	Wate	ater Surface							
	0.	452	39	>75%	6 Grass co	over, Good	, HSG A					
	0.	000	61	>75%	√ Grass co √	over, Good	, HSG B					
	20.	057	74			over, Good						
	0.	000	80	>75%	√ Grass co √	over, Good	, HSG D					
		000	30		ds, Good,							
		000	55		ds, Good,							
		315	70		ds, Good,							
		000	77		ds, Good,							
*		000	30		trap, HS0							
*		000	30		trap, HS0							
_		192	30		d Trap, HS							
		602	76		hted Aver							
		032			9% Pervio							
	3.	570		14.5	1% Imperv	vious Area						
	То	Longt		None	Valacity	Canacity	Description					
	Tc (min)	Lengtl (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
_						(618)	Chast Flour					
	10.8	100	J 0.	1000	0.15		Sheet Flow,					
	8.0	82	2 0	0600	1.71		Woods: Light underbrush n= 0.400 P2= 3.50" Shallow Concentrated Flow,					
	6.0	02.	5 0.0	0600	1.71		Short Grass Pasture Kv= 7.0 fps					
	2.6	452	2 0	1720	2.90		Shallow Concentrated Flow,					
	2.0	40,	2 0.	1720	2.90		Short Grass Pasture Kv= 7.0 fps					
	2.4	1,21	.	0580	8.46	101.48	Trap/Vee/Rect Channel Flow,					
	2.4	1,41	J 0.	0300	0.40	101.40	Bot.W=2.00' D=2.00' Z= 2.0 '/' Top.W=10.00'					
							n= 0.045					
	0.9	1,03	5 0	0350	19.12	135.18	Pipe Channel,					
	0.9	1,00	<i>J</i> 0.0	0000	13.12	100.10	36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'					
							n= 0.012					
_	24.7	3,620) To	otal			0.0.12					
	∠→.1	5,021	, ,,	, ai								

Printed 7/2/2014 Page 38

Subcatchment B104: B104

Printed 7/2/2014

Page 39


Summary for Subcatchment B105: B105

Runoff = 78.04 cfs @ 12.50 hrs, Volume= 10.575 af, Depth= 5.13"

	Area	(ac)	CN	Desc	ription							
*	0.	308	98	Build	ling roof							
*	0.	763	98	Pave	ed surface							
*	0.	287	96	Grav	avel surface							
*	0.	000	98	Wate	er Surface							
	0.	052	39	>75%	6 Grass co	over, Good	, HSG A					
	0.	000	61	>75%	√ Grass co √	over, Good	, HSG B					
	1.	735	74	>75%	√ Grass co √	over, Good	, HSG C					
		688	80			over, Good	, HSG D					
		000	30		ds, Good,							
		000	55		ds, Good,							
		000	70		ds, Good,							
		900	77		ds, Good,							
*		000	30		trap, HS0							
*		000	30		trap, HS0							
<u>*</u>		000	30		Trap, HS							
		733	78		hted Aver							
		662			95.67% Pervious Area 4.33% Impervious Area							
	1.	071		4.33	% Impervi	ous Area						
	Тс	Length		Slope	Velocity	Capacity	Description					
	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)	Description					
_	27.1	100		0400	0.06	(013)	Sheet Flow,					
	21.1	100	0.0	0400	0.00		Woods: Dense underbrush n= 0.800 P2= 3.50"					
	5.4	612	2 0	5680	1.88		Shallow Concentrated Flow,					
	5.4	012	_ 0.	0000	1.00		Forest w/Heavy Litter Kv= 2.5 fps					
	0.6	114	1 0 :	2280	3.34		Shallow Concentrated Flow,					
	0.0		. 0		0.01		Short Grass Pasture Kv= 7.0 fps					
	2.6	880	0.0	0320	5.65	67.84	Trap/Vee/Rect Channel Flow,					
			, o.	0020	0.00	0.101	Bot.W=2.00' D=2.00' Z= 2.0 '/' Top.W=10.00'					
							n= 0.050					
	0.7	900	0.0	0400	20.44	144.51	Pipe Channel,					
							36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'					
							n= 0.012					
	36.4	2,606	3 To	otal								

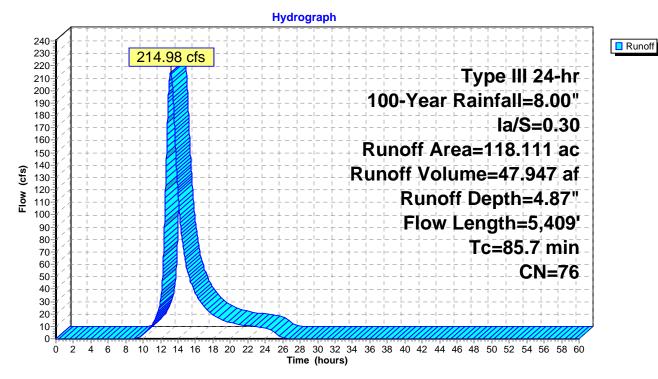
Printed 7/2/2014 Page 40

Subcatchment B105: B105

Printed 7/2/2014

Page 41

Summary for Subcatchment B106: B106


Runoff = 214.98 cfs @ 13.14 hrs, Volume= 47.947 af, Depth= 4.87"

	Area	(ac)	CN	Desc	ription								
*	0.	224	98	Build	ling roof								
*	0.	994	98	Pave	ed surface								
*	0.	746	96		avel surface								
*		000	98 Water Surface										
		090	39		⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟩ ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟨ Grass co ⟩ ⟨ Grass co ⟨ Grass co ⟩ ⟨ Grass co ⟩ ⟨ Grass co ⟨ Grass co ⟩ ⟨ Grass co								
		594	61			over, Good,							
		281	74			over, Good,							
		830	80			over, Good,	HSG D						
		000	30		ds, Good,								
		000	55		ds, Good,								
		050	70		ds, Good,								
		064	77		ds, Good,								
*		000	30		trap, HS0								
*		000	30		trap, HS0								
_		000	30		l Trap, HS								
	118.		76		hted Aver	•							
	116.				7% Pervio								
	1.	218		1.03% Impervious Area									
	Тс	Lengt	h	Slope	Velocity	Capacity	Description						
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description						
_	27.1	10		.0400	0.06	(0.0)	Sheet Flow,						
	21.1	10	,0 0	.0400	0.00		Woods: Dense underbrush n= 0.800 P2= 3.50"						
	34.3	1,83	8 N	.1273	0.89		Shallow Concentrated Flow,						
	01.0	1,00		.1270	0.00		Forest w/Heavy Litter Kv= 2.5 fps						
	19.8	96	0 0	.1040	0.81		Shallow Concentrated Flow,						
		30			0.01		Forest w/Heavy Litter Kv= 2.5 fps						
	4.5	2,51	1 0	.0870	9.30	148.75	Trap/Vee/Rect Channel Flow,						
	-	,			-		Bot.W=2.00' D=2.00' Z= 3.0 '/' Top.W=14.00'						
							n= 0.050						
	85.7	5,40	9 T	otal									

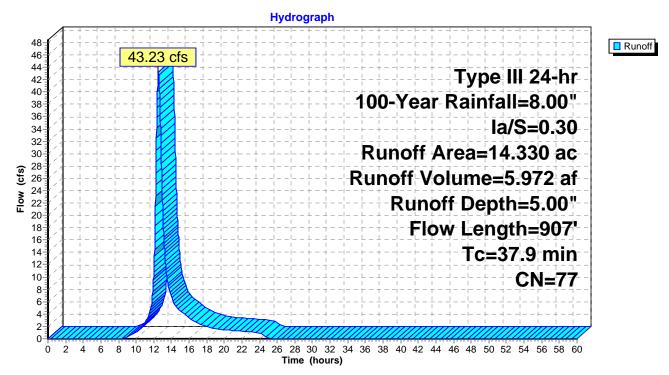
Printed 7/2/2014

Page 42

Subcatchment B106: B106

Printed 7/2/2014

Page 43


Summary for Subcatchment B107: B107

Runoff = 43.23 cfs @ 12.51 hrs, Volume= 5.972 af, Depth= 5.00"

	Area	(ac)	CN	Desc	ription					
*	0.	000	98	Build	ling roof					
*	0.	000	98	Pave	ed surface					
*	0.	106	96	Grav	el surface					
* 0.000 98 Water Surface										
	0.	000	39	>75%	6 Grass co	over, Good,	HSG A			
	0.	000	61	>75%	6 Grass co	over, Good,	HSG B			
	0.	000	74	>75%	√ Grass co √	over, Good,	HSG C			
	0.	301	80	>75%	√ Grass co √	over, Good,	HSG D			
	0.	000	30	Woo	ds, Good,	HSG A				
		000	55		ds, Good,					
	0.	000	70		ds, Good,					
	_	923	77		ds, Good,					
*		000	30		trap, HS0					
*		000	30		trap, HS0					
*	0.	000	30	Sand	l Trap, HS	<u>G C</u>				
		330	77	_	hted Aver	•				
	14.	330		100.	00% Pervi	ous Area				
	Тс	Length		Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	21.7	100	0.	0700	0.08		Sheet Flow,			
							Woods: Dense underbrush n= 0.800 P2= 3.50"			
	5.4	245	5 0.	0900	0.75		Shallow Concentrated Flow,			
							Forest w/Heavy Litter Kv= 2.5 fps			
	10.8	562	2 0.	1200	0.87		Shallow Concentrated Flow,			
_							Forest w/Heavy Litter Kv= 2.5 fps			
	37.9	907	7 To	otal						

Printed 7/2/2014 Page 44

Subcatchment B107: B107

Printed 7/2/2014

Page 45


Summary for Subcatchment B108: B108

Runoff = 137.25 cfs @ 12.44 hrs, Volume= 17.554 af, Depth= 5.00"

_	Area	(ac)	CN	Desc	cription						
*	0.	825	98	Build	ling roof						
*	1.	738	98	Pave	Paved surface						
*	0.	000	96	Grav	Gravel surface						
*	0.	000	98	Wate	er Surface						
	0.	000	39	>75%	6 Grass co	over, Good,	, HSG A				
	0.	000	61			over, Good,					
	9.	100	74			over, Good,					
		909	80			over, Good,	, HSG D				
		000	30		ds, Good,						
		000	55		ds, Good,						
		842	70		ds, Good,						
	_	707	77		ds, Good,						
*		000	30		d trap, HS0						
*		000	30		d trap, HS0						
*		000	30		d Trap, HS						
		121	77		hted Aver						
		558			2% Pervio						
	2.	563		6.08	% Impervi	ous Area					
	_										
	Tc	Length		Slope	Velocity	Capacity	Description				
	(min)	(feet	•	(ft/ft)	(ft/sec)	(cfs)					
	18.8	100	0.	1000	0.09		Sheet Flow,				
							Woods: Dense underbrush n= 0.800 P2= 3.50"				
	3.5	270	0.	2590	1.27		Shallow Concentrated Flow,				
							Forest w/Heavy Litter Kv= 2.5 fps				
	1.8	120) ().	2000	1.12		Shallow Concentrated Flow,				
							Forest w/Heavy Litter Kv= 2.5 fps				
	7.8	823	3 O.	5000	1.77		Shallow Concentrated Flow,				
	0.0	70	- ^	4040	44.40	000.00	Forest w/Heavy Litter Kv= 2.5 fps				
	0.3	72	o 0.	1640	41.40	292.62	Pipe Channel,				
							36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'				
_							n= 0.012				
	32.2	2,038	3 F	otal							

Printed 7/2/2014 Page 46

Subcatchment B108: B108

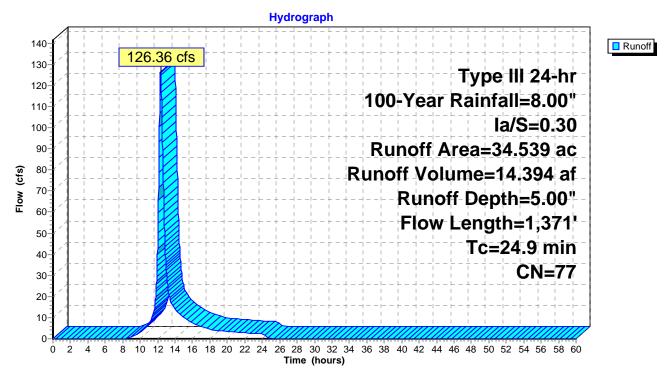
Printed 7/2/2014

Page 47

Summary for Subcatchment B109: B109

Runoff = 126.36 cfs @ 12.34 hrs, Volume= 14.394 af, Depth= 5.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30


	Area	(ac) C	N Des	cription					
*	1.	002	98 Build	ding roof					
*	1.	264	98 Paved surface						
*	0.	000	96 Grav	el surface					
*	0.	592	98 Wate	er Surface					
					over, Good				
					over, Good				
					over, Good				
					over, Good	, HSG D			
				ds, Good,					
				ds, Good,					
				ds, Good,					
_				ds, Good,					
^ +				d trap, HS					
*				d trap, HS					
_				d Trap, HS					
			,	ghted Aver	•				
		681 858		3% Pervio					
	۷.	000	0.27	% Impervi	ous Area				
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	18.8	100	0.1000	0.09		Sheet Flow,			
						Woods: Dense underbrush n= 0.800 P2= 3.50"			
	2.8	395	0.8550	2.31		Shallow Concentrated Flow,			
						Forest w/Heavy Litter Kv= 2.5 fps			
	2.6	265	0.4450	1.67		Shallow Concentrated Flow,			
			0.0005		a- ·-	Forest w/Heavy Litter Kv= 2.5 fps			
	0.2	70	0.0280	5.29	63.46	Trap/Vee/Rect Channel Flow,			
						Bot.W=2.00' D=2.00' Z= 2.0 '/' Top.W=10.00'			
	0.0	400	0.0000	E4.00	202.25	n= 0.050			
	0.0	100	0.2800	54.09	382.35	Pipe Channel, 36.0" Round Area= 7.1 sf Perim= 9.4' r= 0.75'			
						n= 0.012			
	0.2	160	0.1600	14.62	219.28	Channel Flow,			
	0.2	100	0.1000	14.02	219.20	Area= 15.0 sf Perim= 11.0' r= 1.36' n= 0.050			
	0.3	281	0.1600	14.62	219.28	Channel Flow,			
	0.5	201	0.1000	17.02	213.20	Area= 15.0 sf Perim= 11.0' r= 1.36' n= 0.050			
_	24.0	1 371	Total			7.1.04 - 10.0 01 1 011111- 11.0 1- 1.00 11- 0.000			

24.9 1,371 Total

Printed 7/2/2014

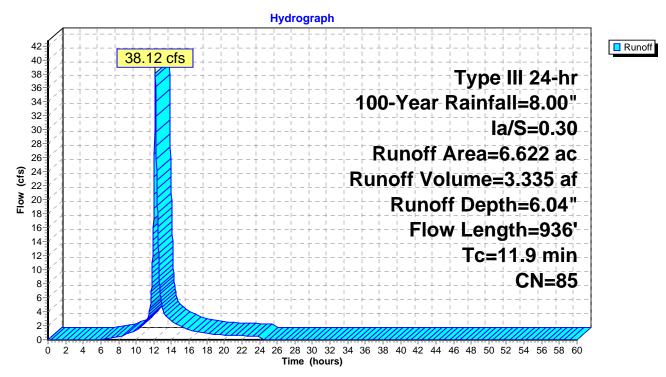
Page 48

Subcatchment B109: B109

Printed 7/2/2014

Page 49

Summary for Subcatchment B110: B110


Runoff = 38.12 cfs @ 12.16 hrs, Volume= 3.335 af, Depth= 6.04"

	Area (ac) CN Description										
*	1.	381	98	Build	Building roof						
*	1.	630	98		Paved surface						
*	0.	000	96	Grav	Gravel surface						
*	0.	0.000 98 Water Surface									
	0.	000	39	>75%	√ Grass co √	over, Good,	HSG A				
	0.	000	61	>75%	⟨ Grass co ⟨	over, Good,	HSG B				
		550	74			over, Good,					
		000	80			over, Good,	HSG D				
		000	30		ds, Good,						
		000	55		ds, Good,						
		061	70		ds, Good,						
		000	77		ds, Good,						
*		000	30		trap, HS0						
^ +		000	30		trap, HS0						
_	0.000 30 Sand Trap, HSG C										
	6.622 85 Weighted Average 3.611 54.53% Pervious Area										
	3.611										
	3.011			45.47% Impervious Area							
	Тс	Lengt	h	Slope	Velocity	Capacity	Description				
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description				
_	9.7	10		.1300	0.17	(013)	Sheet Flow.				
	9.7	10	U U	.1300	0.17		Woods: Light underbrush n= 0.400 P2= 3.50"				
	0.6	12	1 0	.2500	3.50		Shallow Concentrated Flow,				
	0.0	12	. 0	.2000	5.50		Short Grass Pasture Kv= 7.0 fps				
	1.6	71	5 0	.0360	7.40	23.25	Pipe Channel,				
			-	.5555	7.10	20.20	24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'				
							n= 0.024				
	11.9	93	6 T	otal							

Printed 7/2/2014

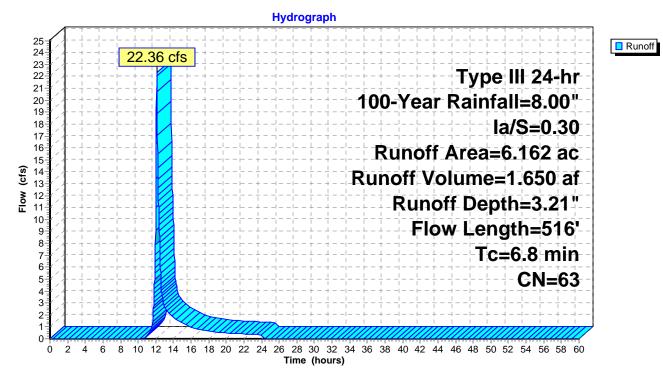
Page 50

Subcatchment B110: B110

Printed 7/2/2014

Page 51

Summary for Subcatchment B111: B111


Runoff = 22.36 cfs @ 12.11 hrs, Volume= 1.650 af, Depth= 3.21"

	Area (ac) CN Description											
*	0.	374	98	Build	Building roof							
*	0.	259	98	Pave	Paved surface							
*	0.	000	96	Grav	Gravel surface							
*	0.536 96 Water Surface											
	2.	753	39	, HSG A								
	0.	000	61	>75%	, HSG B							
	2.	, HSG C										
		000	80			over, Good,	, HSG D					
		000	30		ds, Good,							
		000	55		ds, Good,							
		000	70		ds, Good,							
		000	77		ds, Good,							
*		000	30		trap, HS0							
*		000	30		trap, HS0							
_		000	30		Trap, HS							
	_	162	63		hted Aver							
	4.993				3% Pervio							
	1.169		18.97% Impervious Area									
	т.	1	L (01	Malaalt.	0	December					
	Tc	Lengt		Slope	Velocity	Capacity	Description					
_	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)						
	3.7	10	0 0.	.2000	0.45		Sheet Flow,					
	0.0		- ^	0000	0.40		Grass: Short n= 0.150 P2= 3.50"					
	0.6	11	5 0.	.2000	3.13		Shallow Concentrated Flow,					
	0.5	20	4 0	0000	4.00		Short Grass Pasture Kv= 7.0 fps					
	2.5	30	ι 0.	.0800	1.98		Shallow Concentrated Flow,					
_							Short Grass Pasture Kv= 7.0 fps					
	6.8	51	6 I	otal								

Printed 7/2/2014

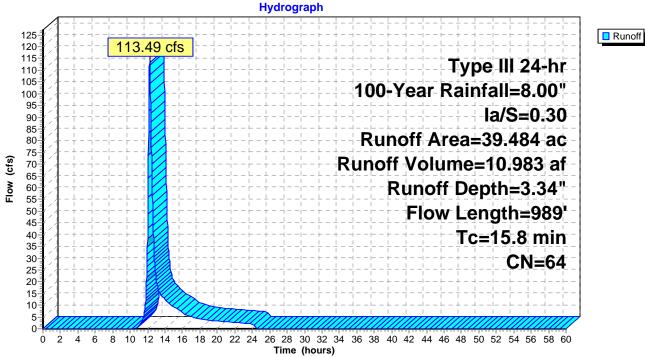
Page 52

Subcatchment B111: B111

Printed 7/2/2014

Page 53

Summary for Subcatchment B112: B112


Runoff = 113.49 cfs @ 12.23 hrs, Volume= 10.983 af, Depth= 3.34"

	Area	(ac)	CN	Desc	ription							
*	1.	437	98	Build	Building roof							
*	1.	880	98	Pave	Paved surface							
*	0.	000	96	Grav	Gravel surface							
*	8.285 98 Water Surface											
	18.759 39 >75% Grass cover, Good, HSG A 0.000 61 >75% Grass cover, Good, HSG B											
	0.	, HSG B										
		382	74			over, Good,						
		015	80			over, Good,	, HSG D					
		052	30		ds, Good,							
		000	55		ds, Good,							
		289	70		ds, Good,							
		000	77		ds, Good,							
*		385	30		trap, HS0							
*		000	30		l trap, HS0							
* 0.000 30 Sand Trap, HSG C												
		484	64		hted Aver							
	27.882				2% Pervio							
	11.602			29.38% Impervious Area								
	Тс	Lengt	th	Slope	Velocity	Capacity	Description					
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description					
_	7.1	10		0.0400	0.23	(013)	Sheet Flow,					
	7.1	10	,, ,	J.0 4 00	0.23		Grass: Short n= 0.150 P2= 3.50"					
	3.1	37	75 (0.0850	2.04		Shallow Concentrated Flow,					
	J. 1	31	5 (3.0030	2.04		Short Grass Pasture Kv= 7.0 fps					
	5.6	51	4 (0.0470	1.52		Shallow Concentrated Flow,					
	0.0	J 1			1.02		Short Grass Pasture Kv= 7.0 fps					
	15.8	98	39	Total								

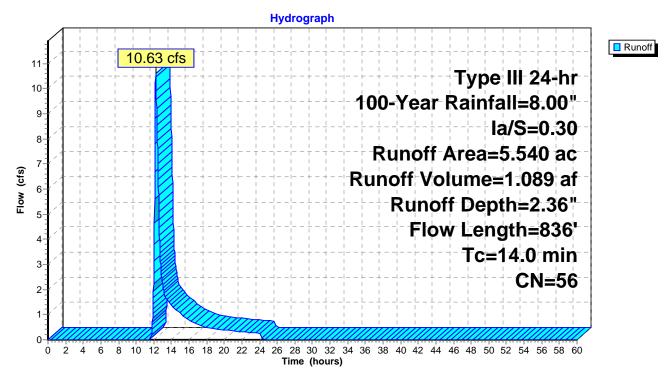
Printed 7/2/2014

Page 54

Subcatchment B112: B112

Printed 7/2/2014

Page 55


Summary for Subcatchment B113: B113

Runoff = 10.63 cfs @ 12.22 hrs, Volume= 1.089 af, Depth= 2.36"

	Area	(ac)	CN	l Desc	ription							
*	0.	178	98	Build	Building roof							
*		684	98		Paved surface							
*		009	96		Gravel surface							
*		000	98		Water Surface							
	2.724 39 >75% Grass cover, Good, HSG A											
	0.000 61 >75% Grass cover, Good, HSG B											
		000	74			over, Good						
		135	80			over, Good	, HSG D					
		720	30		ds, Good,							
		000	55		ds, Good,							
		000	70		ds, Good,							
*		090	77		ds, Good,							
*		000	30 30		trap, HS0							
*					l trap, HS0							
_	* 0.000 30 Sand Trap, HSG C 5.540 56 Weighted Average											
			50									
	4.678 84.44% Pervious <i>A</i> 0.862 15.56% Impervious											
	0.002 10.0070 Impervious Area											
	Тс	Lengt	th	Slope	Velocity	Capacity	Description					
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)						
	11.8	10	00 (0.0800	0.14	, ,	Sheet Flow,					
							Woods: Light underbrush n= 0.400 P2= 3.50"					
	1.6	30	00 (0.0360	3.05		Shallow Concentrated Flow,					
							Unpaved Kv= 16.1 fps					
	0.6	43	6	0.0700	12.07	14.81	Pipe Channel,					
							15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'					
							n= 0.015					
	14.0	83	36 ·	Total								

Printed 7/2/2014 Page 56

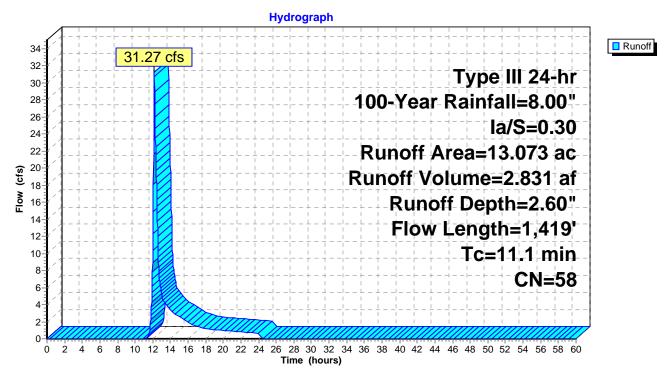
Subcatchment B113: B113

Printed 7/2/2014

Page 57

Summary for Subcatchment B115: B115

Runoff = 31.27 cfs @ 12.17 hrs, Volume= 2.831 af, Depth= 2.60"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

_	Area	(ac)	CN	Desc	ription						
*	0.	817	98	Build	ing roof						
*	0.	449	98	Pave	ed surface						
*	0.	000	96		el surface						
*	0.	000	98		er Surface						
		589	39		, HSG A						
		0.000 61 >75% Grass cover, Good, HSG B									
		040	74			over, Good,					
		000	80			over, Good,	, HSG D				
		030	30		ds, Good,						
		000	55		ds, Good,						
		011	70		ds, Good,						
		000	77		ds, Good,						
*		057	30		trap, HS0						
*		000	30		trap, HS0						
_		080	30		l Trap, HS						
		073	58		hted Aver						
		807			2% Pervio						
	1.	266		9.68	% Impervi	ous Area					
	_	1		0 1	M-11	0 1	December				
	Tc	Lengt		Slope	Velocity	Capacity	Description				
_	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)					
	4.7	10	0 0.	.1100	0.35		Sheet Flow,				
	4.0	0.4		0.440	4 40		Grass: Short n= 0.150 P2= 3.50"				
	4.0	34	0 0.	.0410	1.42		Shallow Concentrated Flow,				
	0.4	07	0 0	0400	C 00	100 10	Short Grass Pasture Kv= 7.0 fps				
	2.4	97	9 U.	.0130	6.80	136.10	Channel Flow,				
_	44.4	4 44		-1-1			Area= 20.0 sf Perim= 12.0' r= 1.67' n= 0.035				
	11.1	1,41	9 10	otal							

Printed 7/2/2014 Page 58

tolomont D445, D445

Subcatchment B115: B115

Printed 7/2/2014

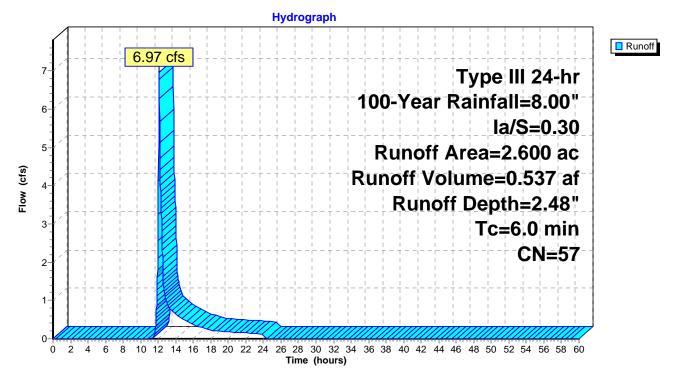
Page 59

Summary for Subcatchment B116: B116

Runoff = 6.97 cfs @ 12.10 hrs, Volume= 0.537 af, Depth= 2.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area (ac) C	N De	scription									
*	0.0	000	98 Bu	ilding roof									
*	0.1	74 9	98 Pa	ved surface									
*	0.0	000	96 Gra	avel surface	;								
*	0.6	321	98 Wa	iter Surface									
	1.8	305	39 >7	5% Grass c	over, Good,	d, HSG A							
	0.0	000	31 >7	5% Grass c	over, Good,	d, HSG B							
	0.0	000	74 >75% Grass cover, Good, HSG C										
	0.0	00 80 >75% Grass cover, Good, HSG D											
	0.0	000	30 Woods, Good, HSG A										
	0.0	000	55 Woods, Good, HSG B										
	0.0	000	70 Wc	ods, Good,	HSG C								
	0.0	000	77 Wc	ods, Good,	HSG D								
*	0.0	000	30 Sa	nd trap, HS	G A								
*	0.0	000	30 Sa	nd trap, HS	G B								
*	0.0	000	<u>30 Sa</u>	nd Trap, HS	SG C								
	2.6	300 £	57 We	eighted Ave	rage								
	1.8	305	69.	42% Pervio	us Area								
	0.7	'95	30.	58% Imper	vious Area								
	Тс	Length	Slope	e Velocity	Capacity	Description							
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)								
	6.0					Direct Entry							


6.0

Direct Entry,

Printed 7/2/2014

Page 60

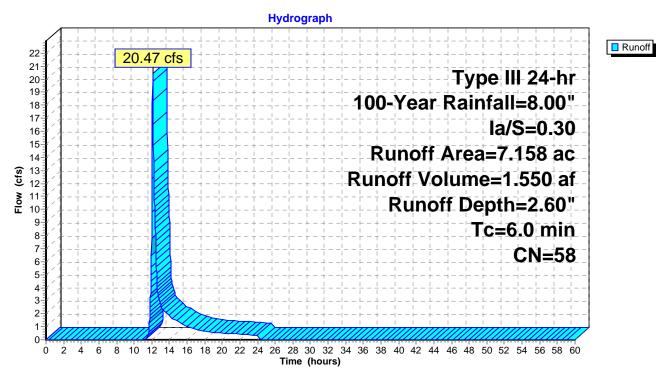
Subcatchment B116: B116

Printed 7/2/2014

Page 61

Summary for Subcatchment B117: B117

Runoff = 20.47 cfs @ 12.10 hrs, Volume= 1.550 af, Depth= 2.60"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area (a	ic) Cl	N Des	cription									
*	1.1	55 9	Build	ding roof									
*	1.13	35 9	B Pav	ed surface									
*	0.0	00 9	Grav	vel surface									
*	0.0	00 9	3 Wat	er Surface									
	4.5	55 3			over, Good,								
	0.0	00 6	1 >75	% Grass c	over, Good,	I, HSG B							
	0.0	00 7			over, Good,	•							
	0.0	_	80 >75% Grass cover, Good, HSG D										
	0.2			Voods, Good, HSG A									
	0.0			/oods, Good, HSG B									
	0.0	00 7		ods, Good,									
	0.0			ods, Good,									
*	0.0			d trap, HS									
*	0.0			d trap, HS									
*	0.0	00 3) San	d Trap, HS	G C								
	7.1	58 5		ghted Aver	•								
	4.8	86	68.0)1% Pervio	us Area								
	2.2	90	31.9	99% Imper	∕ious Area								
		_ength	Slope	Velocity	Capacity	Description							
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	6.0					Direct Entry,							

Printed 7/2/2014

Page 62

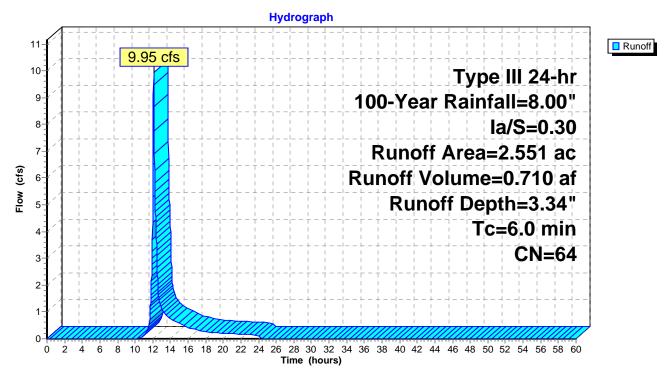
Subcatchment B117: B117

Printed 7/2/2014

Page 63

Summary for Subcatchment B118: B118

Runoff = 9.95 cfs @ 12.09 hrs, Volume= 0.710 af, Depth= 3.34"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area (a	ac)	CN	Desc	cription						
*	0.6	53	98	Build	ling roof						
*	0.4	-38	98	Pave	ed surface						
*	0.0	000	96	Grav	el surface						
*	0.0	000	98	Wate	er Surface						
	1.3	20	39			over, Good,					
	0.0		61			over, Good,	•				
	0.0	00	74			over, Good,					
		000 80 >75% Grass cover, Good, HSG D									
		140 30 Woods, Good, HSG A									
	0.0		55		ds, Good,						
	0.0	000	70		ds, Good,						
	0.0	000	77		ds, Good,						
*	0.0		30		d trap, HS0						
*	0.0		30		d trap, HS0						
*	0.0	000	30	Sand	d Trap, HS	G C					
	2.5	51	64	Weig	ghted Aver	age					
	1.4	-60		57.2	3% Pervio	us Area					
	1.0	91		42.7	7% Imper	∕ious Area					
	Tc	Length	1	Slope	Velocity	Capacity	Description				
_	(min)	(feet))	(ft/ft)	(ft/sec)	(cfs)					
	6.0						Direct Entry,				

Printed 7/2/2014

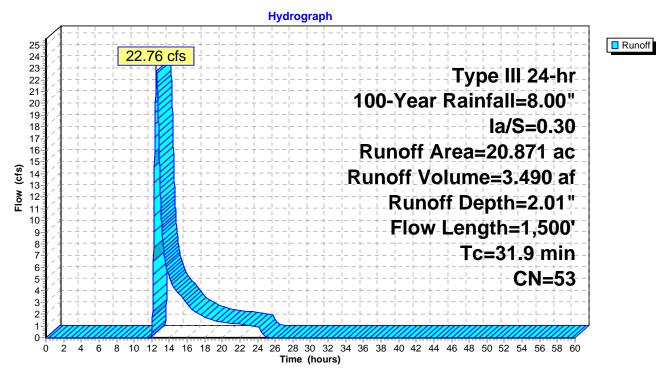
Page 64

Subcatchment B118: B118

Printed 7/2/2014

Page 65

Summary for Subcatchment C101: C101


Runoff = 22.76 cfs @ 12.53 hrs, Volume= 3.490 af, Depth= 2.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area	(ac)	CN	l Desc	ription		
*	0.	000	98	Build	ling roof		
*	1.	029	98	3 Pave	ed surface		
*	0.	058	96	Grav	el surface		
*	0.	000	98	3 Wate	er Surface		
*	0.	000	98	3 Rock	COutcrop/l	_edge	
	8.	770	39			over, Good,	
	0.	000	61			over, Good,	
		156	74			over, Good,	
		000	80			over, Good,	, HSG D
		968	30		ds, Good,		
		000	55		ds, Good,		
		890	70		ds, Good,		
		000	77		ds, Good,		
*		000	30		trap, HS0		
*		000	30		trap, HS0		
_		000	30		l Trap, HS		
		871	53	_	hted Aver	•	
		842			7% Pervio		
	1.	029		4.93	% Impervio	ous Area	
	Тс	Lengt	th	Slope	Velocity	Capacity	Description
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Boompton
	21.7	10		0.0700	0.08	(/	Sheet Flow,
		. •		0.0.0	0.00		Woods: Dense underbrush n= 0.800 P2= 3.50"
	5.6	38	35	0.2100	1.15		Shallow Concentrated Flow,
							Forest w/Heavy Litter Kv= 2.5 fps
	2.7	59	95	0.0300	3.66	18.32	Trap/Vee/Rect Channel Flow,
							Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
							n= 0.050
	1.9	42	20	0.0290	3.60	18.01	Trap/Vee/Rect Channel Flow,
							Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
							n= 0.050
	31.9	1,50	00	Total			

Printed 7/2/2014 Page 66

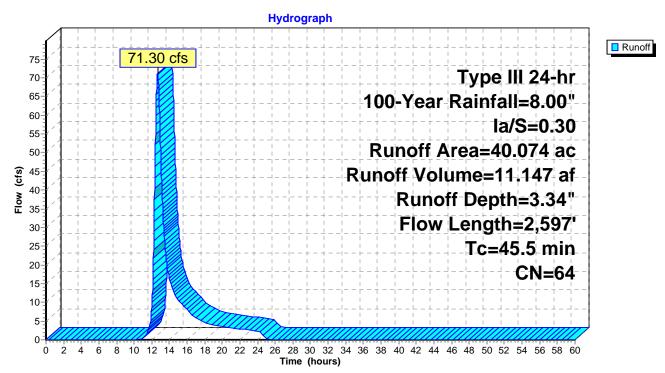
Subcatchment C101: C101

Printed 7/2/2014

Page 67

Summary for Subcatchment C102: C102

Runoff = 71.30 cfs @ 12.67 hrs, Volume= 11.147 af, Depth= 3.34"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area	(ac) C	N Desc	cription		
*	0.	000	98 Build	ding roof		
*				ed surface		
*	0.	515		el surface		
*				er Surface		
*				Outcrop/		
					over, Good	
					over, Good	
					over, Good	
					over, Good	, HSG D
				ds, Good,		
				ds, Good,		
				ds, Good,		
				ds, Good,		
*				d trap, HS		
*				d trap, HS0 d Trap, HS		
_						
		074 950		ghted Aver 0% Pervio	•	
			_	% Pervio % Impervi		
	1.124			70 IIIIÞEIVI	ous Alea	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	<u>'</u>
	19.4	60	0.0330	0.05		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 3.50"
	9.0	40	0.1000	0.07		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 3.50"
	7.2	484	0.2000	1.12		Shallow Concentrated Flow,
		=00	0.4700			Forest w/Heavy Litter Kv= 2.5 fps
	6.8	700	0.4700	1.71		Shallow Concentrated Flow,
	0.0	004	0.0700	40.00	000.05	Forest w/Heavy Litter Kv= 2.5 fps
	0.3	304	0.2700	16.38	262.05	Trap/Vee/Rect Channel Flow,
						Bot.W=2.00' D=2.00' Z= 3.0 '/' Top.W=14.00'
	1.3	777	0.1100	9.86	GE 70	n= 0.050
	1.3	777	0.1100	9.00	65.70	Parabolic Channel, W=5.00' D=2.00' Area=6.7 sf Perim=6.7' n= 0.050
	1.5	232		2.54		Lake or Reservoir,
	1.5	232		2.54		Mean Depth= 0.20'
	1E E	2 507	Total			wean Depui – 0.20
	45.5	2,597	Total			

Printed 7/2/2014

Page 68

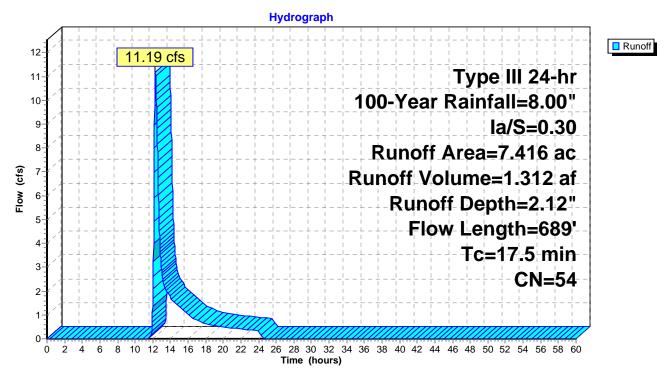
Subcatchment C102: C102

Printed 7/2/2014

Page 69

Summary for Subcatchment C103: C103

Runoff 11.19 cfs @ 12.28 hrs, Volume= 1.312 af, Depth= 2.12"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

_	Area			escription		
*		287		uilding roof		
*		477		aved surface		
*	0.	000		avel surface		
*	0.	000	98 W	ater Surface		
*		046		ock Outcrop/		
	5.	286		'5% Grass c		
	0.	000	61 > 7	′5% Grass c	over, Good	, HSG B
	_	000		'5% Grass c		
	0.	000	80 >7	′5% Grass c	over, Good	, HSG D
	0.	141	30 W	oods, Good,	HSG A	
	0.	000	55 W	oods, Good,	HSG B	
	0.	179	70 W	oods, Good,	HSG C	
	0.	000	77 W	oods, Good,	HSG D	
*	0.	000		and trap, HS		
*	0.	000	30 Sa	and trap, HS	G B	
*	0.	000	30 Sa	and Trap, HS	SG C	
	7.	416	54 W	eighted Ave	rage	
	5.	606	75	5.59% Pervio	ous Area	
	1.	810	24	.41% Imper	vious Area	
				•		
	Tc	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)			(cfs)	·
	10.3	100	0.040	0 0.16	•	Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.50"
	5.7	327	0.148	0 0.96		Shallow Concentrated Flow,
	-					Forest w/Heavy Litter Kv= 2.5 fps
	1.5	262	0.020	0 2.87		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	17.5	689	Total			1 -

Printed 7/2/2014

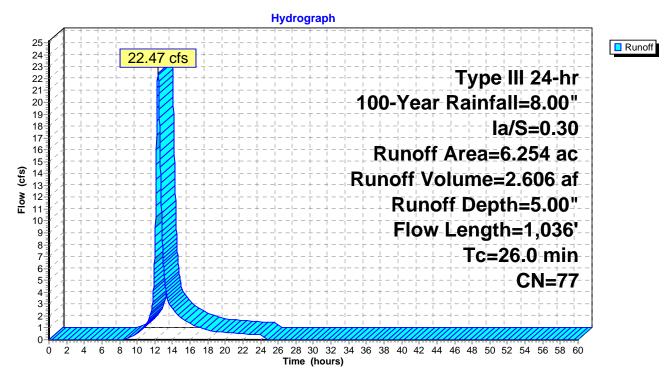
Page 70

Subcatchment C103: C103

Printed 7/2/2014

Page 71

Summary for Subcatchment D101: D101


Runoff = 22.47 cfs @ 12.35 hrs, Volume= 2.606 af, Depth= 5.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area	(ac)	CN	Desc	ription									
*	0.	000	98	Build	ling roof									
*	0.	000	98	Pave	ed surface									
*	0.	000	96	Grav	el surface									
*	0.	000	98		er Surface									
*	0.	000	98	Rock	Outcrop/l	_edge								
		000	39			over, Good,								
		000	61		75% Grass cover, Good, HSG B									
		000	74			over, Good,								
		000	80			over, Good,	HSG D							
		000	30		ds, Good,									
		000	55		ds, Good,									
		000	70		ds, Good,									
		254	77		ds, Good,									
*		000	30		trap, HS0									
*		000	30		trap, HS0									
_		000	30		Trap, HS									
		254	77		hted Aver	0								
	6.	254		100.0	00% Pervi	ous Area								
	Тс	Longs	th	Slope	Velocity	Canacity	Description							
	(min)	Lengt (fee		Slope (ft/ft)	(ft/sec)	Capacity (cfs)	Description							
_						(015)	Shoot Flow							
	19.2	10	<i>i</i> 0 C	0.0950	0.09		Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.50"							
	3.0	60	1 9 (.4450	3.34		Shallow Concentrated Flow,							
	3.0	00	<i>1</i> 0 C	7.4430	3.34		Woodland Kv= 5.0 fps							
	3.8	32	9 C	.0420	1.43		Shallow Concentrated Flow,							
	5.5	52	.5 0		1.70		Short Grass Pasture Kv= 7.0 fps							
_	26.0	1.03	6 T	otal										
	26.0	1,03	86 T	otal										

Printed 7/2/2014 Page 72

Subcatchment D101: D101

Printed 7/2/2014

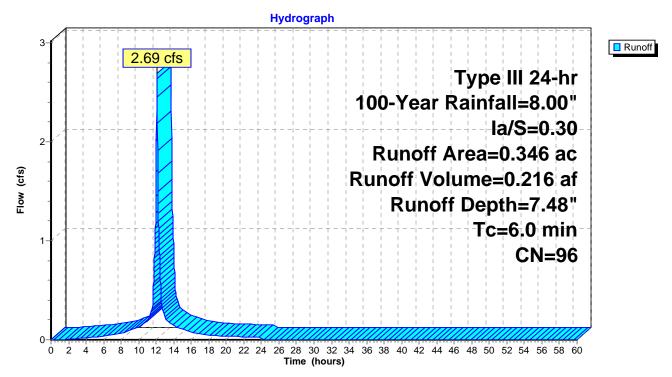
Page 73

Summary for Subcatchment D102: D102

Runoff 2.69 cfs @ 12.08 hrs, Volume= 0.216 af, Depth= 7.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area (ac)	CN	Desc	cription								
*	0.000	98	Build	ling roof								
*	0.262	98	Pave	Paved surface								
	0.084	91	Grav	el roads, H	HSG D							
*	0.000	98	Wate	Vater Surface								
*	0.000	98	Rock	c Outcrop/l	Ledge							
	0.000	39	>75%	% Grass co	over, Good,	d, HSG A						
	0.000	61	>75%	>75% Grass cover, Good, HSG B								
	0.000	74	74 >75% Grass cover, Good, HSG C									
	0.000	80		>75% Grass cover, Good, HSG D								
	0.000	30		Voods, Good, HSG A								
	0.000	55		Voods, Good, HSG B								
	0.000	70		Noods, Good, HSG C								
	0.000	77		ds, Good,								
*	0.000	30		d trap, HS0								
*	0.000	30		d trap, HS0								
*	0.000	30	Sand	d Trap, HS	G C							
	0.346	96	Weig	ghted Aver	age							
	0.084		24.2	8% Pervio	us Area							
	0.262		75.7	2% Imperv	vious Area							
	Tc Lenç	gth \$	Slope	Velocity	Capacity	Description						
	(min) (fe	et)	(ft/ft)	(ft/sec)	(cfs)							
	6.0				·	Direct Entry						


6.0

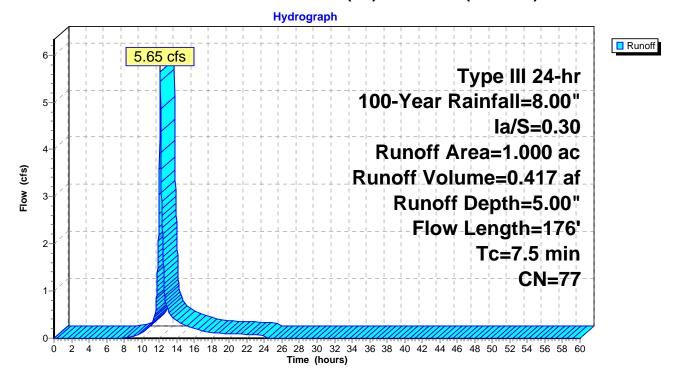
Direct Entry,

Printed 7/2/2014

Page 74

Subcatchment D102: D102

Printed 7/2/2014 Page 75


Summary for Subcatchment Ocerlook (P1): Overlook (Phase 1)

Runoff = 5.65 cfs @ 12.11 hrs, Volume= 0.417 af, Depth= 5.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.00", Ia/S=0.30

	Area	(ac) C	CN Des	cription								
	0.	150	70 Woo	ods, Good,	HSG C							
	0.	590	74 >75	% Grass co	over, Good	, HSG C						
*	0.	260	89 Gra	vel roads a	nd parking	, HSG C						
	0.000 98 Paved parking, HSG C											
	1.000 77 Weighted Average 1.000 100.00% Pervious Area											
	1.	000	100	.00% Pervi	ous Area							
	Tc	Length	Slope	Velocity	Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	2.3	20	0.2000	0.15		Sheet Flow, A to B						
						Woods: Light underbrush n= 0.400 P2= 3.50"						
	5.0	80	0.1600	0.27		Sheet Flow, B to C						
						Grass: Dense n= 0.240 P2= 3.50"						
	0.2	76	0.1100	6.73		Shallow Concentrated Flow, C to D						
						Paved Kv= 20.3 fps						
	7.5	176	Total									

Subcatchment Ocerlook (P1): Overlook (Phase 1)

Printed 7/2/2014

Page 76

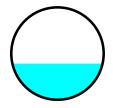
Summary for Reach 36" Pipe: 36" Pipe

[52] Hint: Inlet/Outlet conditions not evaluated

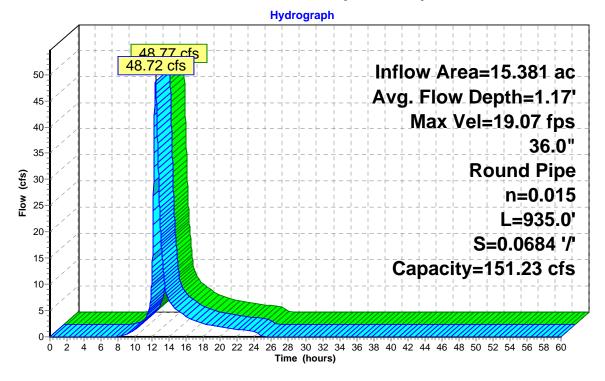
Inflow Area = 15.381 ac, 16.84% Impervious, Inflow Depth = 5.16" for 100-Year event

Inflow = 48.77 cfs @ 12.38 hrs, Volume= 6.609 af

Outflow = 48.72 cfs @ 12.39 hrs, Volume= 6.609 af, Atten= 0%, Lag= 0.6 min

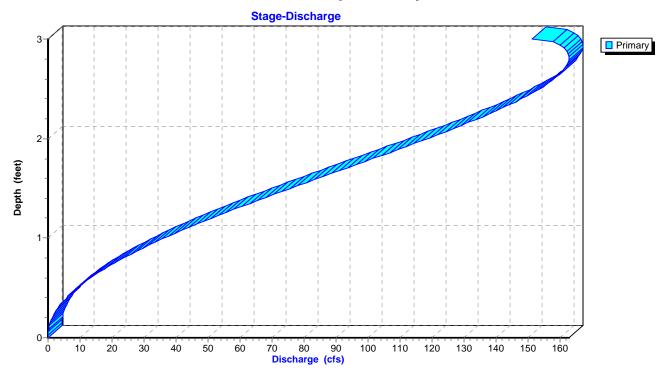

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

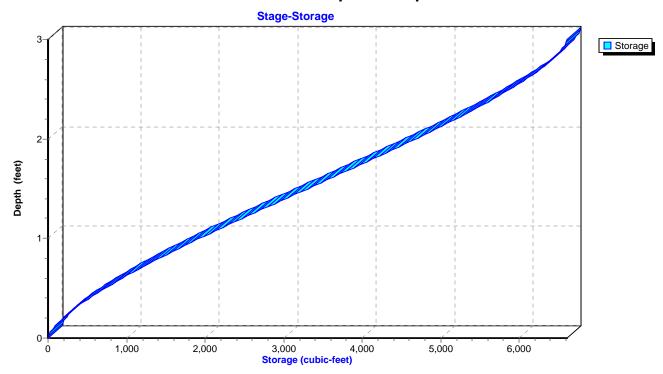
Max. Velocity= 19.07 fps, Min. Travel Time= 0.8 min Avg. Velocity = 5.59 fps, Avg. Travel Time= 2.8 min


Peak Storage= 2,389 cf @ 12.39 hrs
Average Depth at Peak Storage= 1.17'

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 151.23 cfs

36.0" Round Pipe n= 0.015 Length= 935.0' Slope= 0.0684 '/' Inlet Invert= 635.00', Outlet Invert= 571.00'


Reach 36" Pipe: 36" Pipe



Printed 7/2/2014 Page 77

Reach 36" Pipe: 36" Pipe

Reach 36" Pipe: 36" Pipe

Printed 7/2/2014

Page 78

Summary for Reach 42"Pipe: 42" Pipe

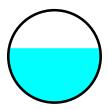
[52] Hint: Inlet/Outlet conditions not evaluated

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area = 100.939 ac, 4.72% Impervious, Inflow Depth = 4.48" for 100-Year event

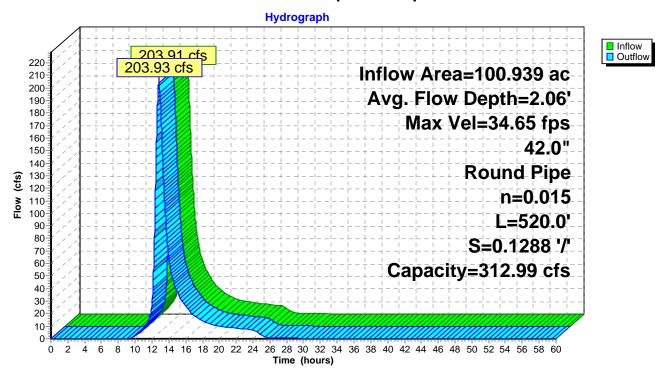
Inflow = 203.91 cfs @ 12.82 hrs, Volume= 37.646 af

Outflow = 203.93 cfs @ 12.82 hrs, Volume= 37.646 af, Atten= 0%, Lag= 0.2 min

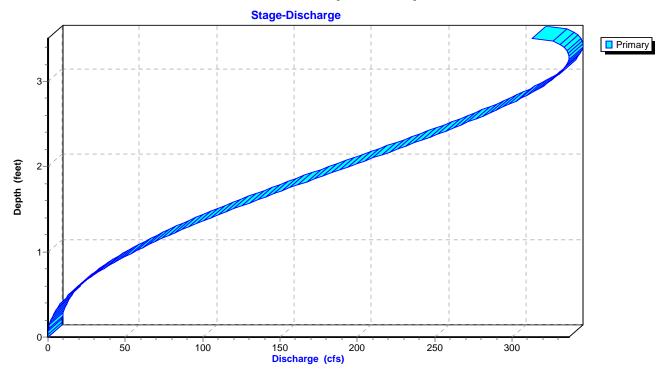

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

Max. Velocity= 34.65 fps, Min. Travel Time= 0.3 min Avg. Velocity = 7.77 fps, Avg. Travel Time= 1.1 min

Peak Storage= 3,060 cf @ 12.82 hrs Average Depth at Peak Storage= 2.06'

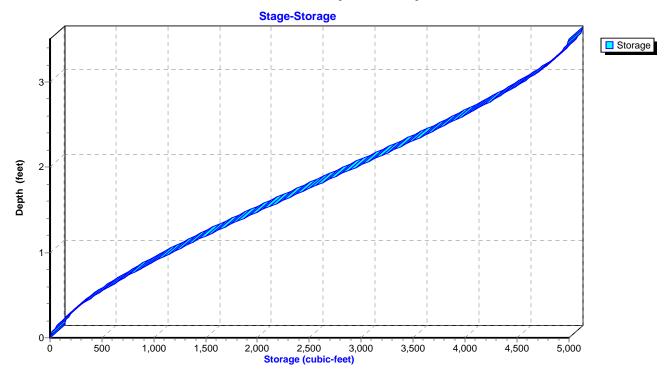

Bank-Full Depth= 3.50' Flow Area= 9.6 sf, Capacity= 312.99 cfs

42.0" Round Pipe n= 0.015 Length= 520.0' Slope= 0.1288 '/' Inlet Invert= 602.00', Outlet Invert= 535.00'



Printed 7/2/2014 Page 79

Reach 42"Pipe: 42" Pipe



Reach 42"Pipe: 42" Pipe

Printed 7/2/2014 Page 80

Reach 42"Pipe: 42" Pipe

Printed 7/2/2014

Page 81

Summary for Reach A105R: Thru A103

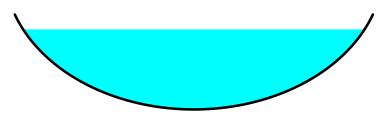
Inflow Area = 41.903 ac, 12.86% Impervious, Inflow Depth = 3.76" for 100-Year event

Inflow = 106.52 cfs @ 12.35 hrs, Volume= 13.146 af

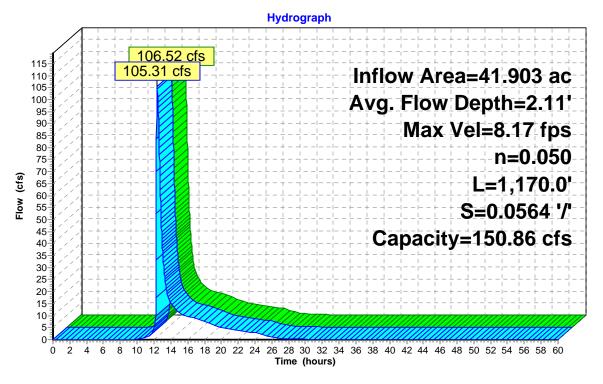
Outflow = 105.31 cfs @ 12.38 hrs, Volume= 13.145 af, Atten= 1%, Lag= 2.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

Max. Velocity= 8.17 fps, Min. Travel Time= 2.4 min Avg. Velocity = 1.61 fps, Avg. Travel Time= 12.1 min

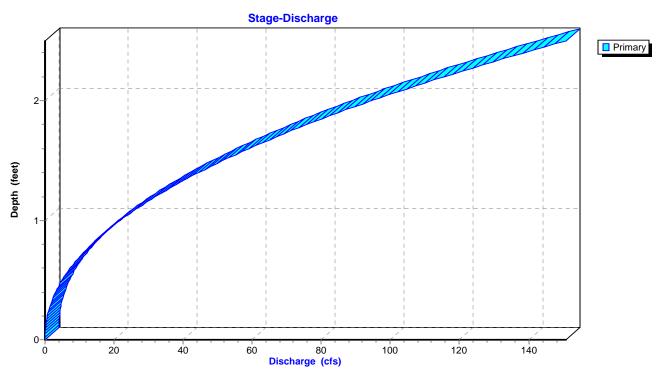

Peak Storage= 15,073 cf @ 12.38 hrs Average Depth at Peak Storage= 2.11'

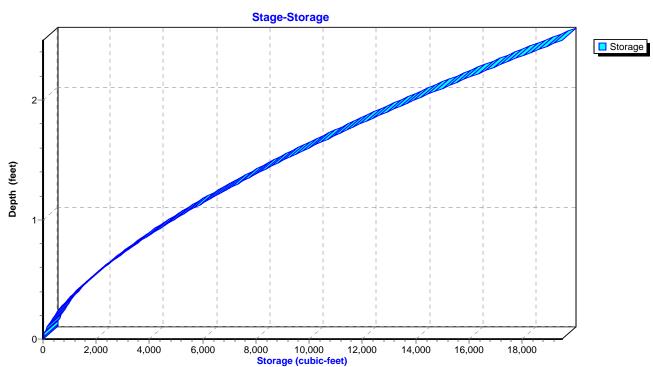
Bank-Full Depth= 2.50' Flow Area= 16.7 sf, Capacity= 150.86 cfs


10.00' x 2.50' deep Parabolic Channel, n= 0.050

Length= 1,170.0' Slope= 0.0564 '/'

Inlet Invert= 566.00', Outlet Invert= 500.00'


Reach A105R: Thru A103



Printed 7/2/2014 Page 82

Reach A105R: Thru A103

Reach A105R: Thru A103

Printed 7/2/2014

Page 83

Summary for Reach B107R: Thru B103

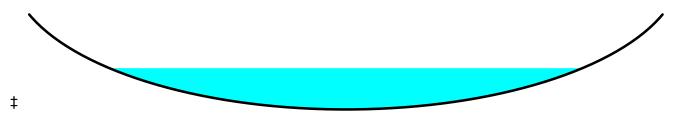
Inflow Area = 14.330 ac, 0.00% Impervious, Inflow Depth = 4.77" for 100-Year event

Inflow = 31.60 cfs @ 12.80 hrs, Volume= 5.696 af

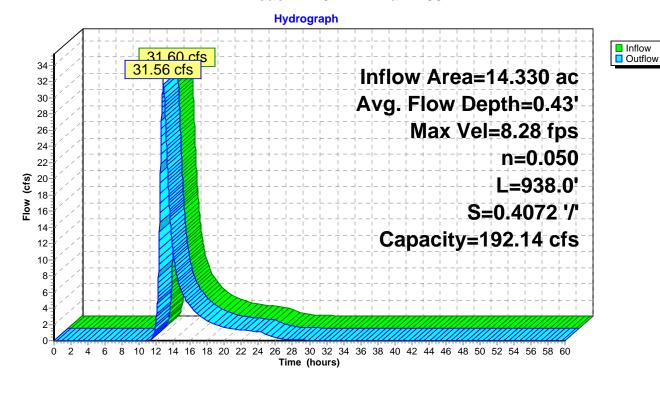
Outflow = 31.56 cfs @ 12.83 hrs, Volume= 5.696 af, Atten= 0%, Lag= 1.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

Max. Velocity= 8.28 fps, Min. Travel Time= 1.9 min Avg. Velocity = 1.76 fps, Avg. Travel Time= 8.9 min

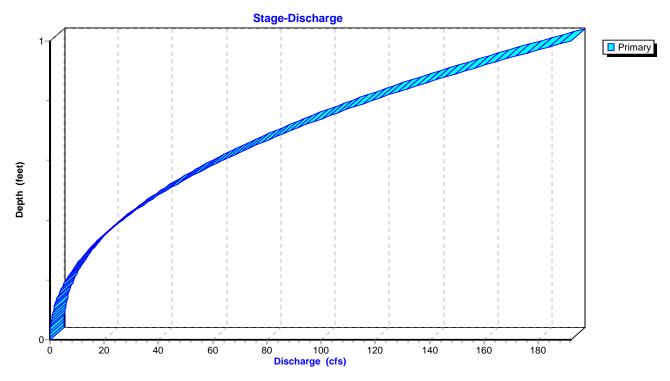

Peak Storage= 3,575 cf @ 12.83 hrs Average Depth at Peak Storage= 0.43'

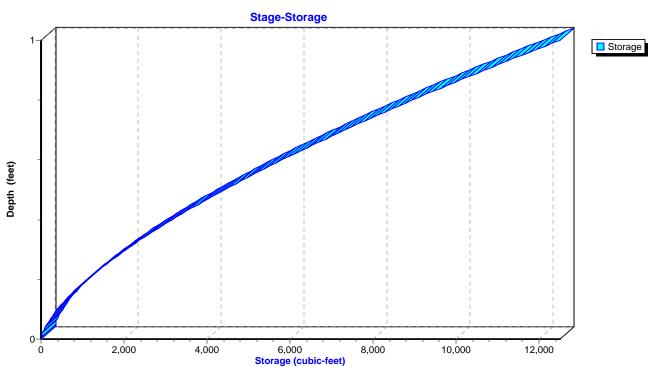
Bank-Full Depth= 1.00' Flow Area= 13.3 sf, Capacity= 192.14 cfs


20.00' x 1.00' deep Parabolic Channel, n= 0.050

Length= 938.0' Slope= 0.4072 '/'

Inlet Invert= 972.00', Outlet Invert= 590.00'


Reach B107R: Thru B103


Printed 7/2/2014

Page 84

Reach B107R: Thru B103

Reach B107R: Thru B103

Printed 7/2/2014

Page 85

Summary for Reach B112R: Thru B102

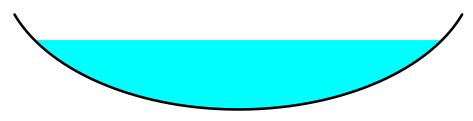
Inflow Area = 248.085 ac, 10.82% Impervious, Inflow Depth > 4.32" for 100-Year event

Inflow = 189.74 cfs @ 14.07 hrs, Volume= 89.406 af

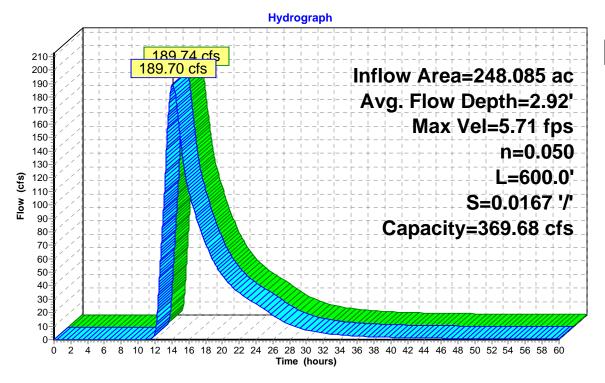
Outflow = 189.70 cfs @ 14.09 hrs, Volume= 89.398 af, Atten= 0%, Lag= 1.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3

Max. Velocity= 5.71 fps, Min. Travel Time= 1.8 min Avg. Velocity = 2.12 fps, Avg. Travel Time= 4.7 min

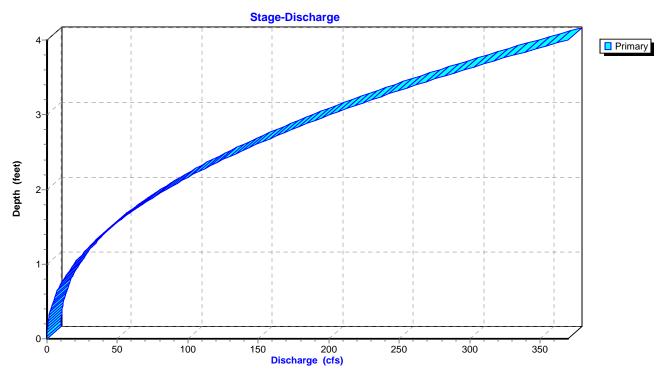

Peak Storage= 19,949 cf @ 14.09 hrs Average Depth at Peak Storage= 2.92'

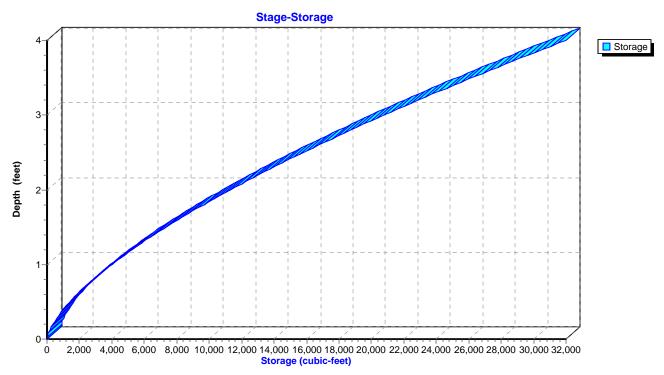
Bank-Full Depth= 4.00' Flow Area= 53.3 sf, Capacity= 369.68 cfs


20.00' x 4.00' deep Parabolic Channel, n= 0.050

Length= 600.0' Slope= 0.0167 '/'

Inlet Invert= 502.00', Outlet Invert= 492.00'


Reach B112R: Thru B102



Printed 7/2/2014 Page 86

Reach B112R: Thru B102

Reach B112R: Thru B102

29011.00 Proposed_FINAL

Type III 24-hr 100-Year Rainfall=8.00", la/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 87

Summary for Pond 102C: Pond 102C

Inflow Area = 40.074 ac, 2.80% Impervious, Inflow Depth = 3.34" for 100-Year event

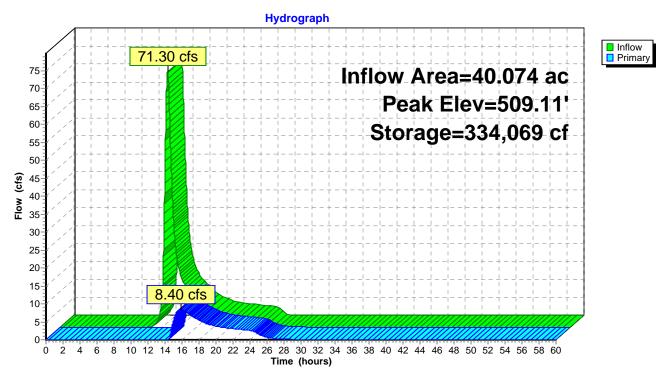
Inflow = 71.30 cfs @ 12.67 hrs, Volume= 11.147 af

Outflow = 8.40 cfs @ 15.86 hrs, Volume= 4.020 af, Atten= 88%, Lag= 191.5 min

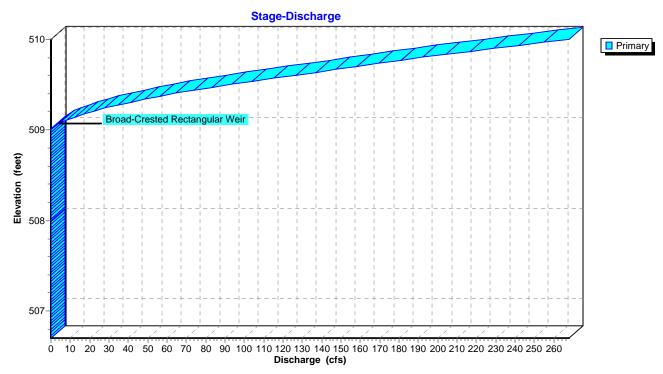
Primary = 8.40 cfs @ 15.86 hrs, Volume= 4.020 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 509.11' @ 15.86 hrs Surf.Area= 219,925 sf Storage= 334,069 cf

Plug-Flow detention time= 394.2 min calculated for 4.018 af (36% of inflow)


Center-of-Mass det. time= 257.7 min (1,146.7 - 889.0)

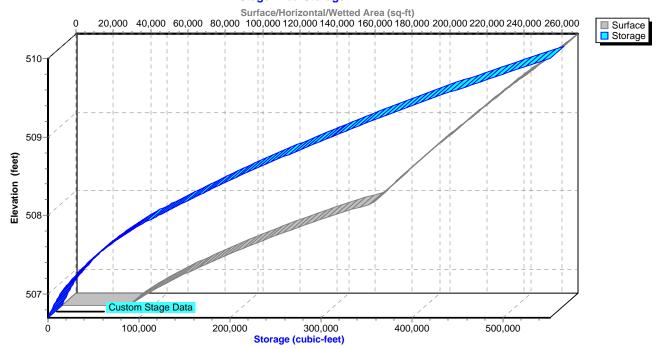
Volume	Inv	ert Avai	I.Storage	Storage Descripti	Storage Description					
#1	506.	70' 5	51,461 cf	Custom Stage D	Custom Stage Data (Irregular)Listed below (Recalc)					
Elevation (fee		Surf.Area (sq-ft)	Perim (feet		Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
506.7 508.0 510.0	00	35,778 165,975 268,777	1,168.0 1,973.0 2,083.0	120,819	0 120,819 551,461	35,778 237,000 272,736				
Device	Routing	In	vert Ou	tlet Devices						
#1 Primary 509.00' 100.0' long x 5.0' breadth Broad-Crested Rectangular W Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1. 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88						1.20 1.40 1.60 1.80 2 68 2.66 2.65 2.65 2.6				


Primary OutFlow Max=8.40 cfs @ 15.86 hrs HW=509.11' TW=0.00' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 8.40 cfs @ 0.77 fps)

Printed 7/2/2014 Page 88

Pond 102C: Pond 102C

Pond 102C: Pond 102C



Printed 7/2/2014

Page 89

Pond 102C: Pond 102C

Stage-Area-Storage

Printed 7/2/2014

Page 90

Summary for Pond 104A: Wetland D

Inflow Area = 29.922 ac, 5.68% Impervious, Inflow Depth = 1.34" for 100-Year event Inflow = 19.75 cfs @ 12.45 hrs, Volume= 3.344 af

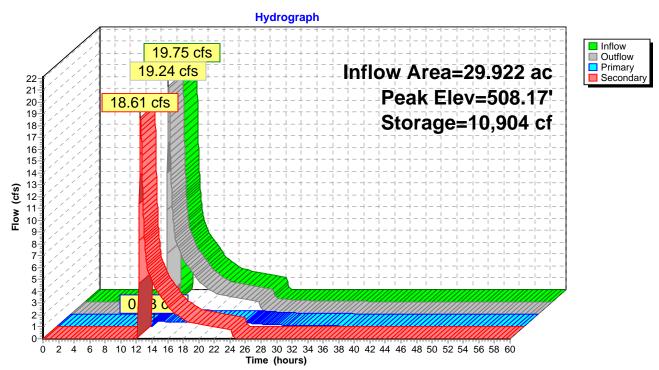
Outflow = 19.24 cfs @ 12.53 hrs, Volume= 3.323 af, Atten= 3%, Lag= 4.4 min Primary = 0.63 cfs @ 12.53 hrs, Volume= 0.493 af

Secondary = 18.61 cfs @ 12.53 hrs, Volume= 2.831 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 508.17' @ 12.53 hrs Surf.Area= 26,015 sf Storage= 10,904 cf

Plug-Flow detention time= 56.6 min calculated for 3.322 af (99% of inflow) Center-of-Mass det. time= 53.9 min (985.7 - 931.7)

<u>Volume</u>	Inve	ert Avai	l.Storage	Storage Descriptio	n				
#1	507.7	0'	19,762 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)			
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
507.7 508.0 508.5	00	18,708 25,271 27,505	688.0 735.0 755.0	0 6,572 13,190	0 6,572 19,762	18,708 24,034 26,435			
Device	Routing	Inv	vert Outle	et Devices					
#1	Primary	L= 2 Inlet n= 0 dary 508.00' 100. Head		12.0" Round Culvert L= 20.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 507.70' / 507.30' S= 0.0200 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf					
#2	Seconda			100.0' long x 20.0' breadth Broad-Crested Rectangular Weir ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 pef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63					


Primary OutFlow Max=0.63 cfs @ 12.53 hrs HW=508.17' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.63 cfs @ 2.54 fps)

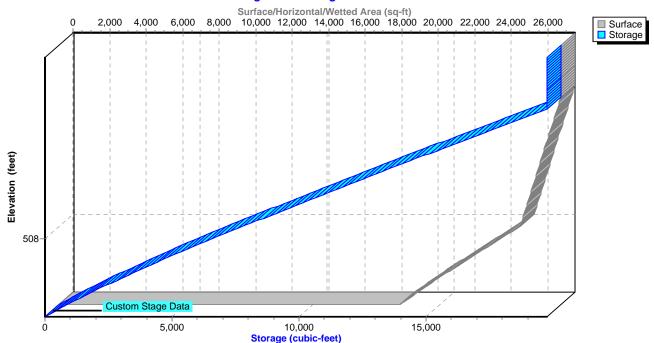
Secondary OutFlow Max=18.60 cfs @ 12.53 hrs HW=508.17' TW=0.00' (Dynamic Tailwater)


2=Broad-Crested Rectangular Weir (Weir Controls 18.60 cfs @ 1.10 fps)

Page 91

Pond 104A: Wetland D

Pond 104A: Wetland D



Printed 7/2/2014

Page 92

Pond 104A: Wetland D

Stage-Area-Storage

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 93

Summary for Pond 105A: Wetland H

[62] Hint: Exceeded Reach 36" Pipe OUTLET depth by 3.65' @ 15.50 hrs

Inflow Area = 41.903 ac, 12.86% Impervious, Inflow Depth = 3.77" for 100-Year event

107.03 cfs @ 12.32 hrs, Volume= Inflow 13.162 af

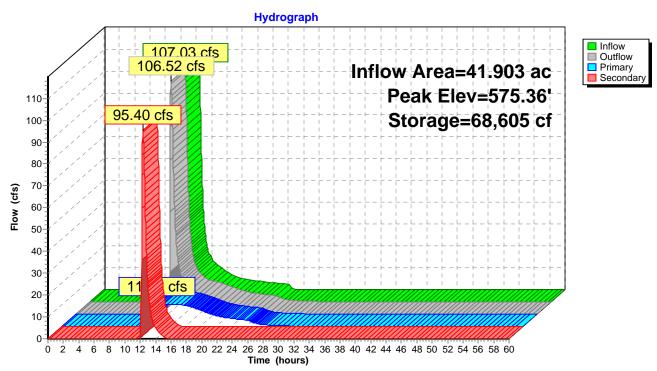
Outflow 106.52 cfs @ 12.35 hrs, Volume= 13.146 af, Atten= 0%, Lag= 1.4 min

11.12 cfs @ 12.35 hrs, Volume= Primary 7.765 af 95.40 cfs @ 12.35 hrs, Volume= Secondary = 5.380 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 575.36' @ 12.35 hrs Surf.Area= 32,500 sf Storage= 68,605 cf

Plug-Flow detention time= 61.1 min calculated for 13.146 af (100% of inflow)

Center-of-Mass det. time= 60.3 min (923.4 - 863.1)

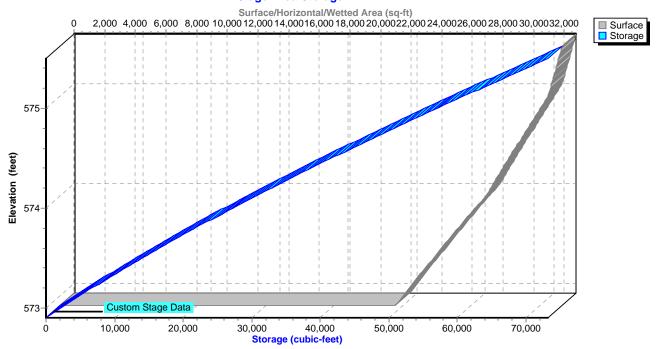

Volume	Inver	t Avail.S	torage	Storage Description		
#1	572.90	' 73	,215 cf	Custom Stage Data	a (Irregular)Listed	below (Recalc)
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
572.9 574.0	90	21,891 27,791	815.0 848.0	0 27,261	0 27,261	21,891 26,353
575.0	00	31,858	892.0	29,801	57,062	32,507
575.5	50	32,755	899.0	16,153	73,215	33,601
Device	Routing	Inve	rt Outle	et Devices		
#1	Primary	572.90		" Round Culvert 0.0' CMP, square e	dge headwall Ke=	= 0.500
			Inlet	/ Outlet Invert= 572.9 .025 Corrugated me	90' / 572.00' S= 0	.0450 '/' Cc= 0.900
#2	Secondary	/ 575.00	Head 2.50 Coef	3.00 3.50 4.00 4.5	.60 0.80 1.00 1.2 50 5.00 5.50 0 2.70 2.68 2.68	20 1.40 1.60 1.80 2.00 2.66 2.65 2.65 2.65

Primary OutFlow Max=11.12 cfs @ 12.35 hrs HW=575.36' TW=568.09' (Dynamic Tailwater) 1=Culvert (Inlet Controls 11.12 cfs @ 6.29 fps)

Secondary OutFlow Max=95.30 cfs @ 12.35 hrs HW=575.36' TW=568.09' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 95.30 cfs @ 1.48 fps)

Printed 7/2/2014 Page 94

Pond 105A: Wetland H


Pond 105A: Wetland H

Printed 7/2/2014

Page 95

Pond 105A: Wetland H

Printed 7/2/2014

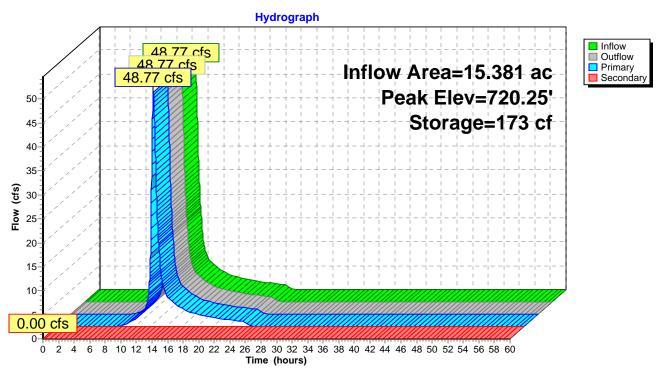
Page 96

Summary for Pond 106A: 36" Culvert

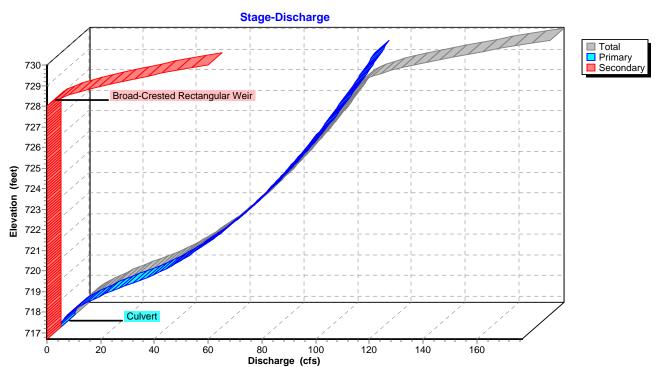
Inflow Area = 15.381 ac, 16.84% Impervious, Inflow Depth = 5.16" for 100-Year event
Inflow = 48.77 cfs @ 12.38 hrs, Volume= 6.609 af
Outflow = 48.77 cfs @ 12.38 hrs, Volume= 6.609 af, Atten= 0%, Lag= 0.2 min
Primary = 48.77 cfs @ 12.38 hrs, Volume= 6.609 af
Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 720.25' @ 12.38 hrs Surf.Area= 146 sf Storage= 173 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (851.7 - 851.7)


Volume	Inve	rt Avail	.Storage	Storage Description	n				
#1	716.70)'	9,700 cf	Custom Stage Da	ta (Irregular)Listed	below (Recalc)			
Elevation	on S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>			
716.7	70	0	0.0	0	0	0			
728.0	00	1,478	185.0	5,567	5,567	2,917			
730.0	00	2,717	256.0	4,133	9,700	5,448			
Device	Routing	Inv	ert Outle	et Devices					
#1	Primary	716.	70' 36.0	" Round Culvert					
			Inlet	L= 133.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 716.70' / 686.00' S= 0.2308 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 7.07 sf					
#2	Secondar	y 728.		•	n Broad-Crested Ro	•			
						20 1.40 1.60 1.80 2.0)0		
			2.50	3.00 3.50 4.00 4	.50 5.00 5.50				
			Coef	f. (English) 2.34 2.	50 2.70 2.68 2.68	2.66 2.65 2.65 2.65			
			2.65	2.67 2.66 2.68 2	.70 2.74 2.79 2.88	3			

Primary OutFlow Max=48.77 cfs @ 12.38 hrs HW=720.25' TW=636.17' (Dynamic Tailwater) 1=Culvert (Inlet Controls 48.77 cfs @ 6.90 fps)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=716.70' TW=635.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 97

Pond 106A: 36" Culvert

Pond 106A: 36" Culvert

Printed 7/2/2014 Page 98

Pond 106A: 36" Culvert

29011.00 Proposed_FINAL

Type III 24-hr 100-Year Rainfall=8.00", la/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 99

Summary for Pond 106B: Wetland J

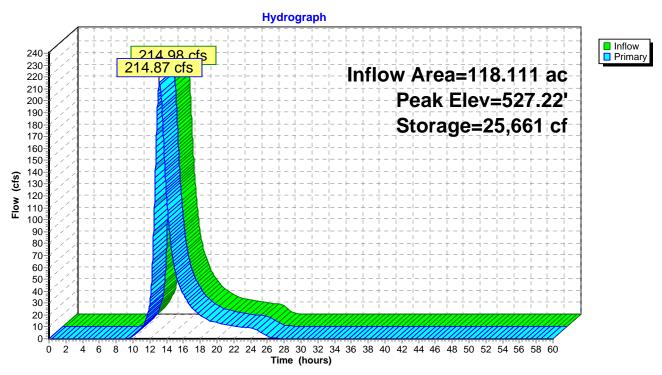
Inflow Area = 118.111 ac, 1.03% Impervious, Inflow Depth = 4.87" for 100-Year event

Inflow = 214.98 cfs @ 13.14 hrs, Volume= 47.947 af

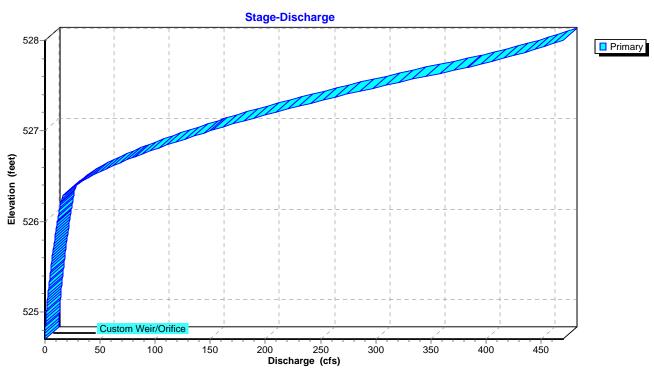
Outflow = 214.87 cfs @ 13.15 hrs, Volume= 47.947 af, Atten= 0%, Lag= 0.7 min

Primary = 214.87 cfs @ 13.15 hrs, Volume= 47.947 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 527.22' @ 13.15 hrs Surf.Area= 12,660 sf Storage= 25,661 cf

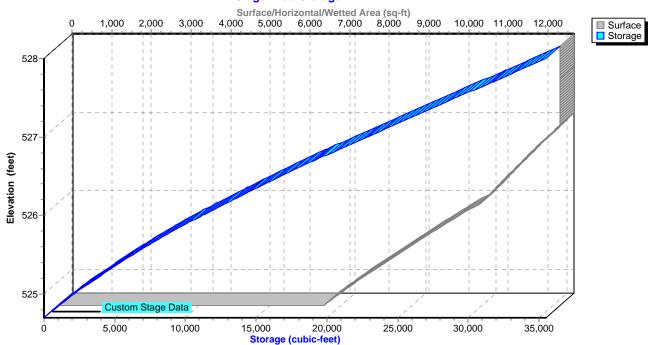

Plug-Flow detention time= 6.6 min calculated for 47.947 af (100% of inflow) Center-of-Mass det. time= 6.3 min (901.9 - 895.6)

Volume	Inve	ert Ava	il.Storage	Storage Description				
#1	524.7	' 0'	35,483 cf	Custom Stage D	ata (Irregular) Liste	d below (Recalc)		
Elevatio (fee	_	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
524.7 526.0 527.0 528.0	00 00	6,700 10,653 12,660 12,660	344.0 430.0 461.0 461.0	0 11,181 11,642 12,660	0 11,181 22,823 35,483	6,700 12,021 14,264 14,725		
Device	Routing	In	vert Outle	et Devices				
#1	Primary	524	Head	d (feet) 0.00 1.50	Cv= 2.62 (C= 3.28) 1.60 2.00 3.00 60.00 60.00 70.0			


Primary OutFlow Max=214.83 cfs @ 13.15 hrs HW=527.22' TW=518.69' (Dynamic Tailwater) 1=Custom Weir/Orifice (Weir Controls 214.83 cfs @ 3.39 fps)

Printed 7/2/2014 Page 100

Pond 106B: Wetland J


Pond 106B: Wetland J

Printed 7/2/2014

Page 101

Pond 106B: Wetland J

Printed 7/2/2014

Page 102

Summary for Pond 107A: 24" Culvert

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area = 95.412 ac, 4.86% Impervious, Inflow Depth = 4.59" for 100-Year event

Inflow = 198.70 cfs @ 12.82 hrs, Volume= 36.504 af

Outflow = 198.71 cfs @ 12.82 hrs, Volume= 36.504 af, Atten= 0%, Lag= 0.2 min

Primary = 45.08 cfs @ 12.82 hrs, Volume= 22.847 af Secondary = 153.63 cfs @ 12.82 hrs, Volume= 13.658 af

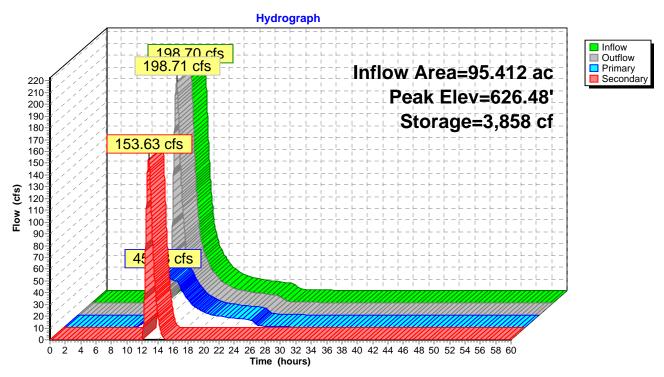
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 626.48' @ 12.82 hrs Surf.Area= 1,681 sf Storage= 3,858 cf

Plug-Flow detention time= 0.4 min calculated for 36.492 af (100% of inflow)

Center-of-Mass det. time= 0.4 min (887.7 - 887.3)

Volume	Invert	Avail.S	Storage	Storage Description	n		
#1	619.60'	13	3,340 cf	of Custom Stage Data (Irregular)Listed below (Recalc)			
Elevation (fee		rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
619.6	60	0	0.0	0	0	0	
626.0		1,453	185.0	3,100	3,100	2,787	
628.0		2,500	275.0	3,906	7,006	6,114	
630.0	00	3,885	330.0	6,334	13,340	8,830	
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary	619.8	0' 24.0	" Round Culvert			
•		Inlet	L= 145.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 619.80' / 607.40' S= 0.0855 '/' Cc= 0.900 n= 0.010, Flow Area= 3.14 sf				
#2	Secondary	625.0	0' 25.0 '	long x 5.0' breadt	th Broad-Crested R	Rectangular Weir X 0.00	
				` ,		0 1.40 1.60 1.80 2.00	
				3.00 3.50 4.00 4.			
						2.66 2.65 2.65 2.65	
"0	0 1	005.0			.70 2.74 2.79 2.88		
#3	Secondary	625.0		tom Weir/Orifice, C		0.000	
				'	1.00 1.50 2.00 2.5		
			Widt	h (teet) 20.00 25.0	0 30.00 35.00 40.0	00 45.00 50.00	

Primary OutFlow Max=45.08 cfs @ 12.82 hrs HW=626.48' TW=604.06' (Dynamic Tailwater) 1=Culvert (Inlet Controls 45.08 cfs @ 14.35 fps)

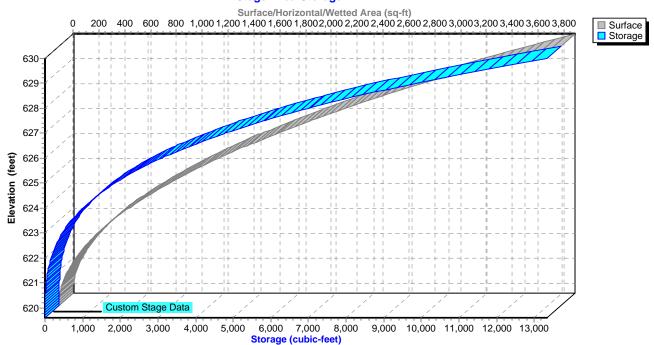

Secondary OutFlow Max=153.62 cfs @ 12.82 hrs HW=626.48' TW=613.51' (Dynamic Tailwater)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)


—3=Custom Weir/Orifice (Weir Controls 153.62 cfs @ 3.77 fps)

Page 103

Pond 107A: 24" Culvert



Pond 107A: 24" Culvert

Printed 7/2/2014 Page 104

Pond 107A: 24" Culvert

29011.00 Proposed FINAL

Type III 24-hr 100-Year Rainfall=8.00", la/S=0.30

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C Printed 7/2/2014 HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Page 105

Summary for Pond 107B: Wetland

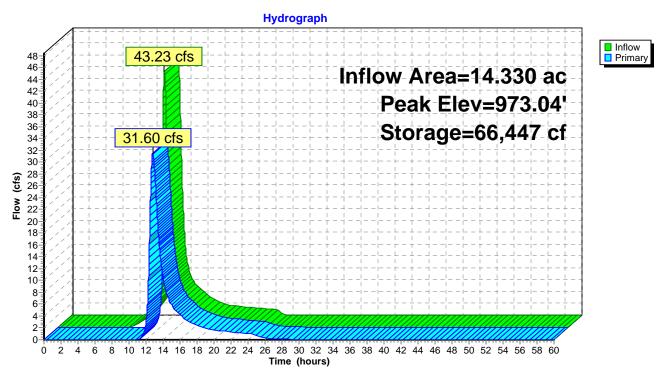
Inflow Area = 14.330 ac. 0.00% Impervious, Inflow Depth = 5.00" for 100-Year event

Inflow 43.23 cfs @ 12.51 hrs. Volume= 5.972 af

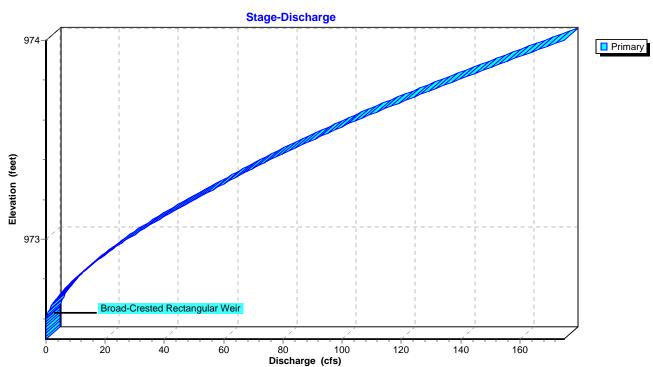
31.60 cfs @ 12.80 hrs, Volume= Outflow 5.696 af, Atten= 27%, Lag= 17.3 min

31.60 cfs @ 12.80 hrs, Volume= Primary 5.696 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 973.04' @ 12.80 hrs Surf.Area= 126,505 sf Storage= 66,447 cf

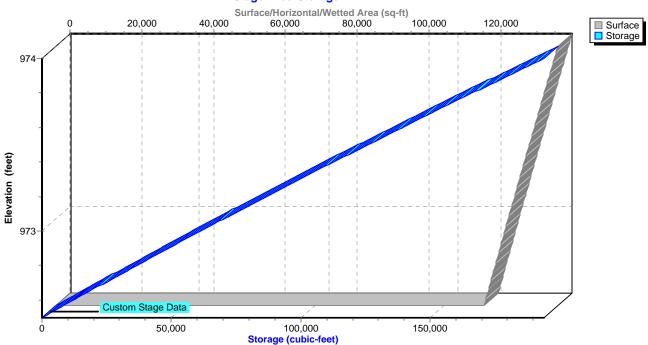

Plug-Flow detention time= 83.5 min calculated for 5.694 af (95% of inflow) Center-of-Mass det. time= 58.4 min (907.1 - 848.7)

Volume	Inve	rt Avai	I.Storage	Storage Description	on		
#1	972.5	0' 1	94,134 cf	Custom Stage Da	ata (Irregular) List	ted below (Recalc)	
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
972.50 974.00		119,286 139,831	2,006.0 2,145.0	0 194,134	0 194,134	119,286 165,307	
Device I	Routing	ln	vert Outle	et Devices			
#1	Primary	972	Head	d (feet) 0.20 0.40	0.60 0.80 1.00	ted Rectangular W 1.20 1.40 1.60 63 2.64 2.64 2.63	


Primary OutFlow Max=31.60 cfs @ 12.80 hrs HW=973.04' TW=972.43' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 31.60 cfs @ 1.79 fps)

Page 106

Pond 107B: Wetland


Pond 107B: Wetland

Printed 7/2/2014

Page 107

Pond 107B: Wetland

Printed 7/2/2014

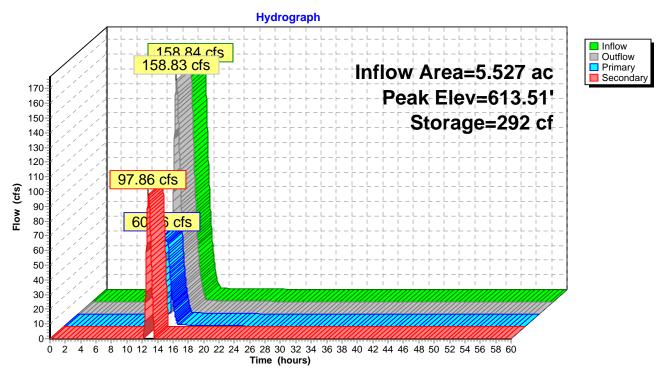
Page 108

Summary for Pond 108A: 36" Culvert

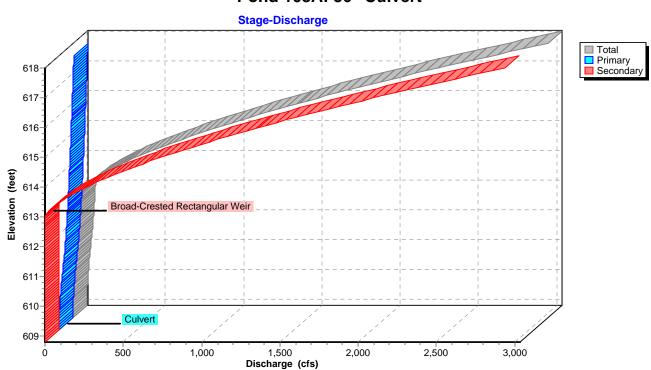
Inflow Area = 5.527 ac, 2.32% Impervious, Inflow Depth = 32.13" for 100-Year event Inflow = 158.84 cfs @ 12.82 hrs, Volume= 14.799 af Outflow = 158.83 cfs @ 12.82 hrs, Volume= 14.799 af, Atten= 0%, Lag= 0.0 min Primary = 60.96 cfs @ 12.82 hrs, Volume= 9.062 af Secondary = 97.86 cfs @ 12.82 hrs, Volume= 5.737 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 613.51' @ 12.82 hrs Surf.Area= 781 sf Storage= 292 cf

Plug-Flow detention time= 0.4 min calculated for 14.799 af (100% of inflow) Center-of-Mass det. time= 0.0 min (791.3 - 791.3)

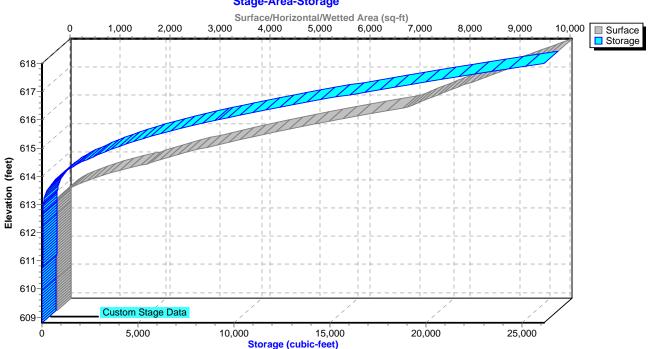

Volume	Inve	rt Avail.	Storage	Storage Description				
#1	608.8	0' 26	6,148 cf	Custom Stage Da	ta (Irregular)Liste	d below (Recalc)		
Elevation	n :	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
608.8	30	13	13.0	0	0	13		
612.7	' 0	13	13.0	51	51	64		
614.0	00	1,828	415.0	865	915	13,758		
616.0	00	7,012	545.0	8,280	9,195	23,736		
618.0	00	10,030	620.0	16,952	26,148	30,786		
Device	Routing	Inve	ert Outle	et Devices				
#1	Primary	608.8	3 6.0	" Round Culvert				
	_		L= 4	5.0' CMP, square e	edge headwall, Ke	e= 0.500		
			Inlet	/ Outlet Invert= 608	.80' / 606.90' S=	0.0422 '/' Cc= 0.900		
				.025 Corrugated me				
#2	Secondar	condary 613.00' ^r		100.0' long x 24.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63				

Primary OutFlow Max=60.96 cfs @ 12.82 hrs HW=613.51' TW=604.06' (Dynamic Tailwater) 1=Culvert (Inlet Controls 60.96 cfs @ 8.62 fps)


Secondary OutFlow Max=97.80 cfs @ 12.82 hrs HW=613.51' TW=604.06' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 97.80 cfs @ 1.92 fps)

Page 109

Pond 108A: 36" Culvert



Pond 108A: 36" Culvert

Printed 7/2/2014 Page 110

Pond 108A: 36" Culvert

Printed 7/2/2014

Page 111

Summary for Pond SWM 7A: SWM 7A (Phase 1)

Inflow Area = 1.000 ac, 0.00% Impervious, Inflow Depth = 5.00" for 100-Year event

Inflow 5.65 cfs @ 12.11 hrs. Volume= 0.417 af

4.56 cfs @ 12.17 hrs, Volume= Outflow 0.417 af, Atten= 19%, Lag= 4.1 min

4.56 cfs @ 12.17 hrs, Volume= Primary 0.417 af

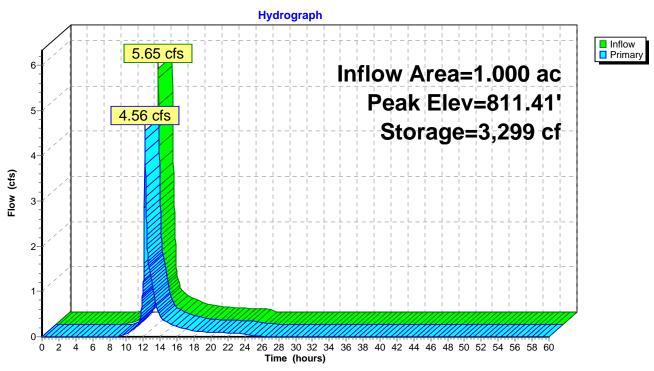
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 811.41' @ 12.17 hrs Surf.Area= 3,016 sf Storage= 3,299 cf

Plug-Flow detention time= 30.5 min calculated for 0.417 af (100% of inflow)

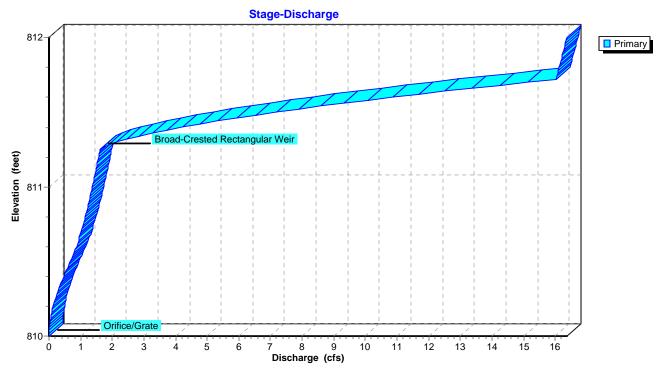
Center-of-Mass det. time= 30.2 min (850.8 - 820.5)

Volume	Inve	ert Avail.Sto	rage	Storage	Description	
#1	810.0	0' 5,2	38 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
810.0	0	1,656		0	0	
812.0	0	3,582		5,238	5,238	
Device #1	Routing Primary	Invert 805.00'	15.0	et Devices	Culvert	
			Inlet	/ Outlet In		rojecting, Ke= 0.200 804.00' S= 0.0250 '/' Cc= 0.900
#2	Device 1	810.00'	8.0"	Vert. Ori	fice/Grate C=	0.600
#3	Device 1	811.25'	Head 2.50 Coef	d (feet) 0 3.00	.20 0.40 0.60 a) 2.69 2.72 2.	0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Primary OutFlow Max=4.53 cfs @ 12.17 hrs HW=811.41' TW=0.00' (Dynamic Tailwater)

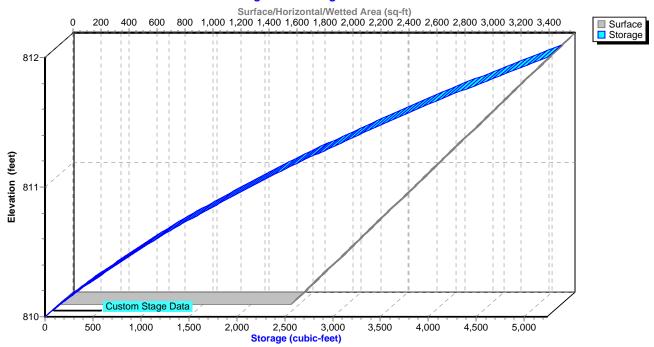

-1=Culvert (Passes 4.53 cfs of 15.64 cfs potential flow)

2=Orifice/Grate (Orifice Controls 1.75 cfs @ 5.00 fps)


-3=Broad-Crested Rectangular Weir (Weir Controls 2.79 cfs @ 1.08 fps)

Printed 7/2/2014 Page 112

Pond SWM 7A: SWM 7A (Phase 1)


Pond SWM 7A: SWM 7A (Phase 1)

Printed 7/2/2014

Page 113

Pond SWM 7A: SWM 7A (Phase 1)

Printed 7/2/2014

Page 114

Summary for Pond SWM1: SWM 1

Inflow Area = 56.627 ac, 6.87% Impervious, Inflow Depth = 3.09" for 100-Year event

Inflow = 72.88 cfs @ 12.85 hrs, Volume= 14.575 af

Outflow = 72.31 cfs @ 12.89 hrs, Volume= 14.561 af, Atten= 1%, Lag= 2.4 min

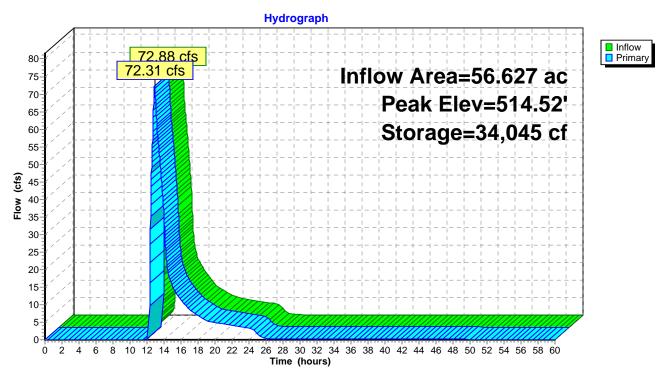
Primary = 72.31 cfs @ 12.89 hrs, Volume= 14.561 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 514.52' @ 12.89 hrs Surf.Area= 17,955 sf Storage= 34,045 cf

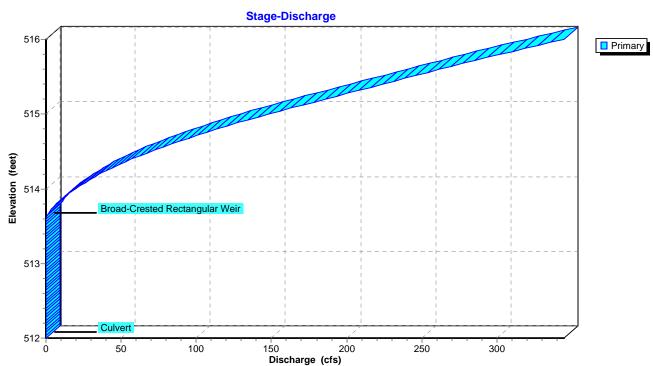
Plug-Flow detention time= 51.3 min calculated for 14.556 af (100% of inflow)

Center-of-Mass det. time= 51.1 min (960.3 - 909.2)

Volume	Inve	ert Avail.Sto	rage	Storage	Description	
#1	512.0	00' 60,6	56 cf	Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevation	on	Surf.Area	Inc	.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
512.0	00	7,821		0	0	
513.0	00	11,858		9,840	9,840	
514.0	00	17,955	1	4,907	24,746	
516.0	00	17,955	3	5,910	60,656	
Device	Routing	Invert	Outle	et Device	S	
#1	Primary	512.00'		Round (rojecting, Ke= 0.200
			Inlet	/ Outlet I		510.00' S= 0.0351 '/' Cc= 0.900
#2	Primary	513.60'	28.0	long x	1.0' breadth Bro	oad-Crested Rectangular Weir
				d (feet) 0 3.00	0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			Coef		,	75 2.85 2.98 3.08 3.20 3.28 3.31

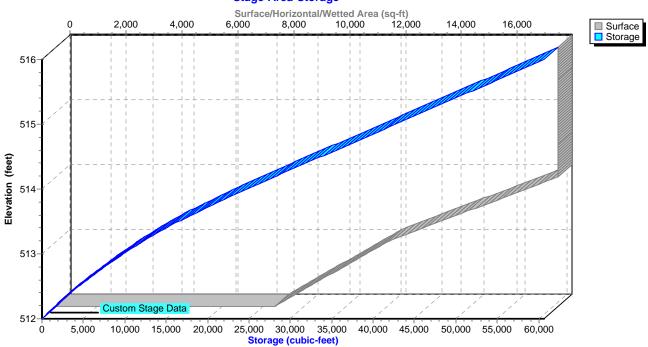

Primary OutFlow Max=72.28 cfs @ 12.89 hrs HW=514.52' TW=0.00' (Dynamic Tailwater)

1=Culvert (Barrel Controls 0.25 cfs @ 5.03 fps)


-2=Broad-Crested Rectangular Weir (Weir Controls 72.03 cfs @ 2.80 fps)

Page 115

Pond SWM1: SWM 1



Pond SWM1: SWM 1

Printed 7/2/2014 Page 116

Pond SWM1: SWM 1

Printed 7/2/2014

Page 117

Summary for Pond SWM10: SWM #10

Inflow Area = 0.346 ac, 75.72% Impervious, Inflow Depth = 7.48" for 100-Year event

Inflow = 2.69 cfs @ 12.08 hrs, Volume= 0.216 af

Outflow = 0.89 cfs @ 12.37 hrs, Volume= 0.216 af, Atten= 67%, Lag= 16.9 min

Primary = 0.89 cfs @ 12.37 hrs, Volume= 0.216 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 609.50' @ 12.37 hrs Surf.Area= 0.018 ac Storage= 0.080 af

Plug-Flow detention time= 102.5 min calculated for 0.216 af (100% of inflow)

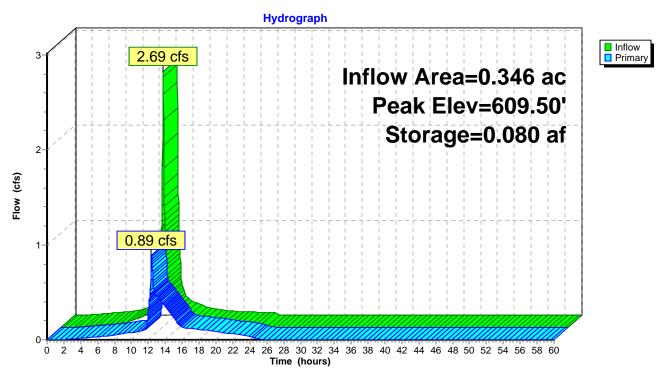
Center-of-Mass det. time= 102.5 min (857.6 - 755.1)

Volume	Invert	Avail.Storage	Storage Description
#1	606.00'	0.087 af	48.0" Round Pipe Storage 1 x 3 L= 100.0'

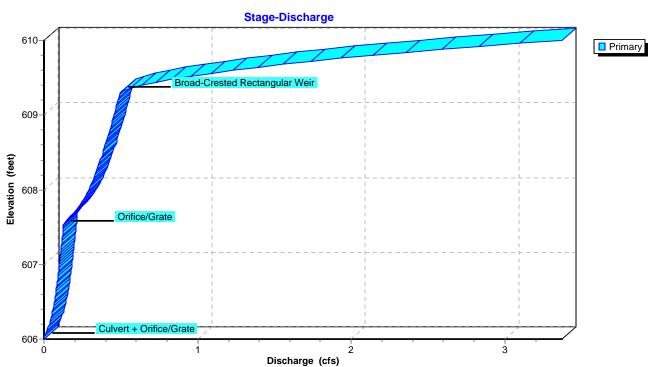
Device	Routing	Invert	Outlet Devices
#1	Primary	606.00'	15.0" Round Culvert
	-		L= 60.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 606.00' / 605.50' S= 0.0083 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 1.23 sf
#2	Device 1	606.00'	2.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	607.50'	3.0" Vert. Orifice/Grate C= 0.600
#4	Device 1	609.30'	1.5' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=0.89 cfs @ 12.37 hrs HW=609.50' TW=0.00' (Dynamic Tailwater)

1=Culvert (Passes 0.89 cfs of 10.56 cfs potential flow)

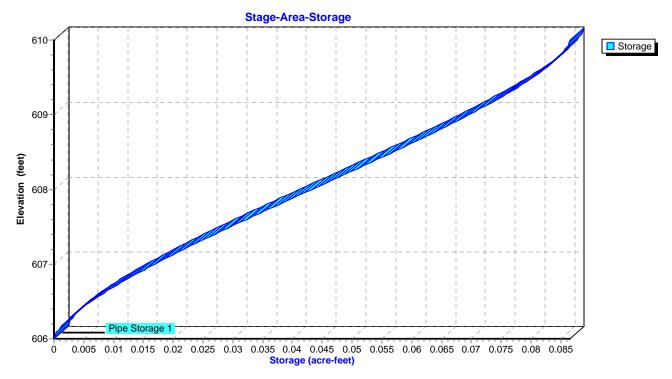

2=Orifice/Grate (Orifice Controls 0.19 cfs @ 8.90 fps)

-3=Orifice/Grate (Orifice Controls 0.32 cfs @ 6.59 fps)


4=Broad-Crested Rectangular Weir (Weir Controls 0.37 cfs @ 1.25 fps)

Printed 7/2/2014 Page 118

Pond SWM10: SWM #10



Pond SWM10: SWM #10

Printed 7/2/2014 Page 119

Pond SWM10: SWM #10

Printed 7/2/2014

Page 120

Summary for Pond SWM2: SWM2

Inflow Area = 113.940 ac, 5.81% Impervious, Inflow Depth = 5.02" for 100-Year event

Inflow = 341.07 cfs @ 12.43 hrs, Volume= 47.706 af

Outflow = 311.53 cfs @ 12.57 hrs, Volume= 47.358 af, Atten= 9%, Lag= 8.9 min

Primary = 311.53 cfs @ 12.57 hrs, Volume= 47.358 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 505.72' @ 12.57 hrs Surf.Area= 68,016 sf Storage= 358,924 cf

Plug-Flow detention time= 88.7 min calculated for 47.342 af (99% of inflow)

Center-of-Mass det. time= 84.4 min (933.9 - 849.5)

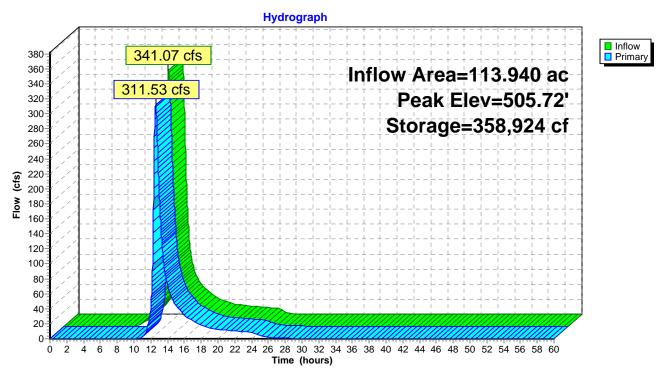
Volume	Invert	Avail.Storage	Storage D	escription
#1	498.00'	378,344 cf	Custom S	tage Data (Prismatic)Listed below (Recalc)
Elevation	Surf.	Area Inc	c.Store	Cum.Store

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
498.00	24,893	0	0
499.00	36,355	30,624	30,624
500.00	39,366	37,861	68,485
501.00	42,483	40,925	109,409
502.00	46,025	44,254	153,663
503.00	50,017	48,021	201,684
504.00	54,900	52,459	254,143
505.00	61,469	58,185	312,327
506.00	70,565	66,017	378,344

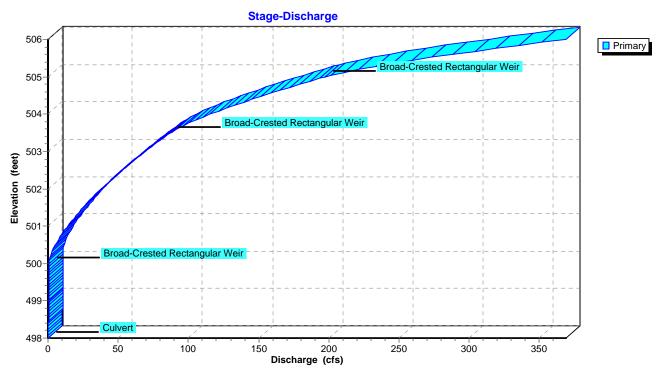
Device	Routing	Invert	Outlet Devices
#1	Primary	498.00'	6.0" Round Culvert
	_		L= 100.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 498.00' / 496.00' S= 0.0200 '/' Cc= 0.900
			n= 0.024, Flow Area= 0.20 sf
#2	Primary	500.00'	5.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64
#3	Primary	503.50'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64
#4	Primary	505.00'	26.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=311.39 cfs @ 12.57 hrs HW=505.72' TW=0.00' (Dynamic Tailwater)

1=Culvert (Barrel Controls 0.89 cfs @ 4.54 fps)

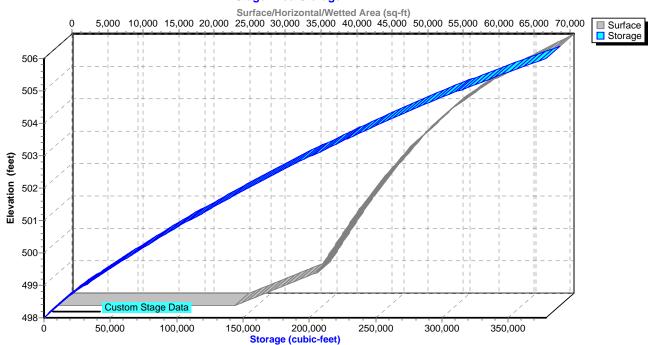

—2=Broad-Crested Rectangular Weir (Weir Controls 180.53 cfs @ 6.31 fps)

—3=Broad-Crested Rectangular Weir (Weir Controls 87.26 cfs @ 3.93 fps)


-4=Broad-Crested Rectangular Weir (Weir Controls 42.70 cfs @ 2.28 fps)

Printed 7/2/2014 Page 121

Pond SWM2: SWM2


Pond SWM2: SWM2

Printed 7/2/2014

Page 122

Pond SWM2: SWM2

Printed 7/2/2014

Page 123

Summary for Pond SWM3try: SWM3

Inflow Area = 248.085 ac, 10.82% Impervious, Inflow Depth > 4.36" for 100-Year event

Inflow = 321.61 cfs @ 12.27 hrs, Volume= 90.091 af

Outflow = 189.74 cfs @ 14.07 hrs, Volume= 89.406 af, Atten= 41%, Lag= 108.0 min

Primary = 189.74 cfs @ 14.07 hrs, Volume= 89.406 af

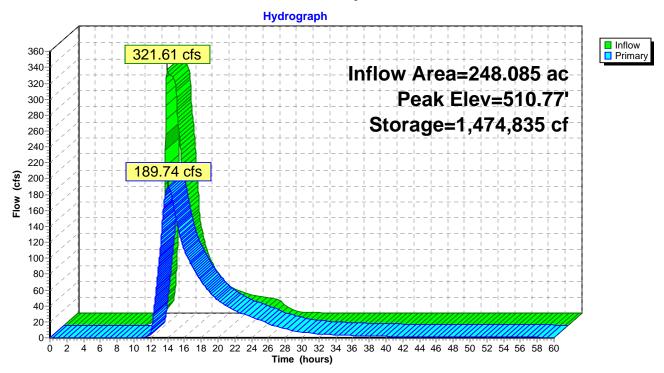
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 510.77' @ 14.07 hrs Surf.Area= 436,252 sf Storage= 1,474,835 cf

Plug-Flow detention time= 207.0 min calculated for 89.406 af (99% of inflow)

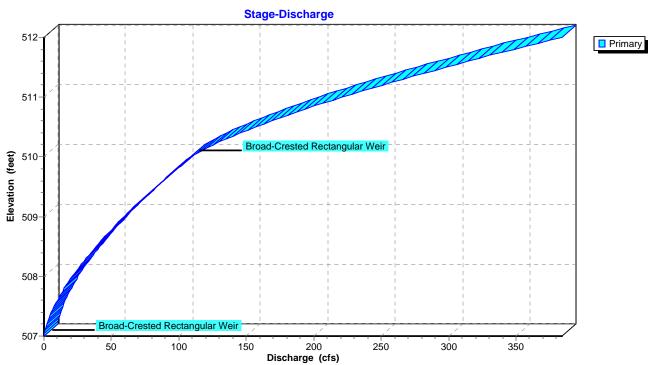
Center-of-Mass det. time= 191.5 min (1,102.0 - 910.4)

Volume	Inve	t Avail.Storage		Storage l	Description	
#1	507.0	2,034,3	374 cf	Custom Stage Data (Prismatic)Listed below (Recalc)		
Elevatio		Surf.Area (sq-ft)	Inc.S (cubic-	Store feet)	Cum.Store (cubic-feet)	
507.0 508.0 510.0 512.0	00	359,082 370,212 413,188 473,139	783	0 1,647 3,400 5,327	364,647 1,148,047 2,034,374	
Device	Routing	Invert	Outlet	t Devices	;	

Device	Routing	Invert	Outlet Devices
#1	Primary	507.00'	8.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
#2	Primary	510.00'	20.0' long x 50.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

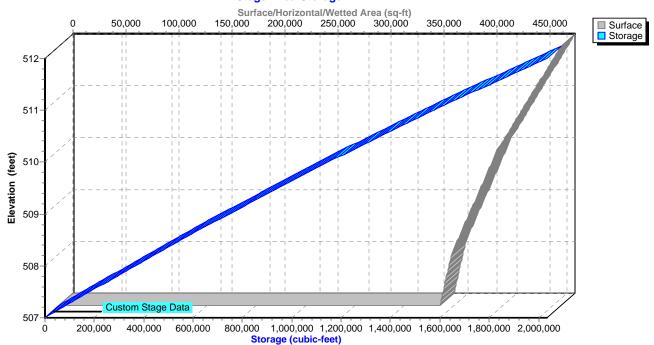

Primary OutFlow Max=189.73 cfs @ 14.07 hrs HW=510.77' TW=504.92' (Dynamic Tailwater)

1=Broad-Crested Rectangular Weir (Weir Controls 153.97 cfs @ 5.11 fps)


-2=Broad-Crested Rectangular Weir (Weir Controls 35.75 cfs @ 2.32 fps)

Printed 7/2/2014 Page 124

Pond SWM3try: SWM3


Pond SWM3try: SWM3

Printed 7/2/2014

Page 125

Pond SWM3try: SWM3

Printed 7/2/2014

Page 126

Summary for Pond SWM4: SWM4

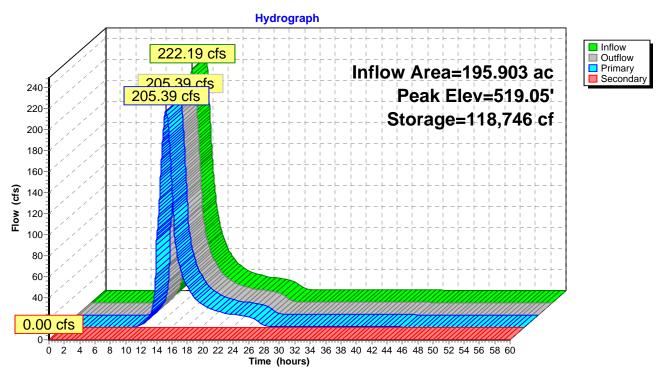
Inflow Area = 195.903 ac, 6.18% Impervious, Inflow Depth > 3.36" for 100-Year event Inflow = 222.19 cfs @ 13.15 hrs, Volume= 54.773 af Outflow = 205.39 cfs @ 13.41 hrs, Volume= 54.761 af, Atten= 8%, Lag= 15.7 min

Primary = 205.39 cfs @ 13.41 hrs, Volume= 54.761 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

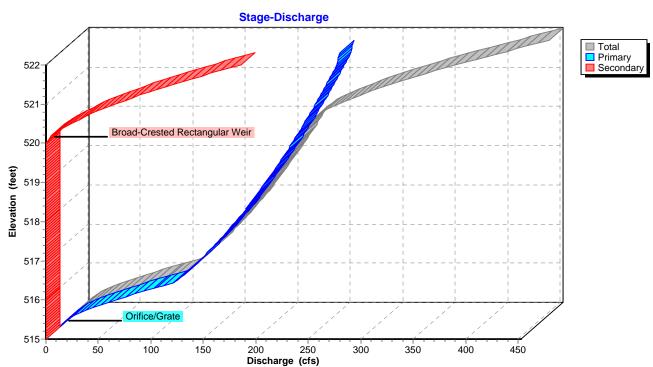
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 519.05' @ 13.41 hrs Surf.Area= 36,400 sf Storage= 118,746 cf

Plug-Flow detention time= 7.4 min calculated for 54.742 af (100% of inflow) Center-of-Mass det. time= 6.9 min (941.3 - 934.5)

Volume	Inv	ert Avail.S	Avail.Storage		Description		
#1	515.0	5.00' 235,273 d		cf Custom Stage Data (Prismatic)Listed below (Recalc)			
Elevation (feet)	=	Surf.Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)		
515.00	515.00 23,225			0	0		
516.00 25,820		2	24,523	24,523			
518.00 32,405		į	58,225	82,748			
520.00)	40,040	7	72,445	155,193		
522.00 40,040		40,040	8	30,080	235,273		
Device	Routing	Inve	t Outl	et Devices			
#1	Primary	510.00	L= 2	50.0' RCF		projecting, Ke= 0.200	

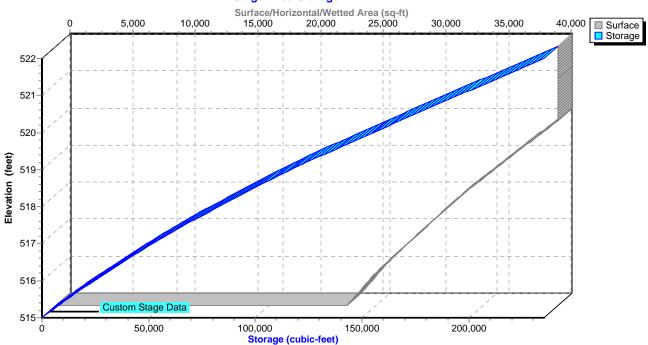

	•		L= 250.0' RCP, groove end projecting, Ke= 0.200
			Inlet / Outlet Invert= 510.00' / 505.50' S= 0.0180 '/' Cc= 0.900
			n= 0.020, Flow Area= 7.07 sf
#2	Device 1	515.00'	36.0" Horiz. Orifice/Grate X 3.00 C= 0.600
			Limited to weir flow at low heads
#3	Secondary	520.00'	25.0' long x 20.0' breadth Broad-Crested Rectangular Weir
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=205.38 cfs @ 13.41 hrs HW=519.05' TW=510.44' (Dynamic Tailwater)
1=Culvert (Passes 205.38 cfs of 212.98 cfs potential flow)
2=Orifice/Grate (Orifice Controls 205.38 cfs @ 9.68 fps)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=515.00' TW=507.00' (Dynamic Tailwater) 3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 127

Pond SWM4: SWM4


Pond SWM4: SWM4

Printed 7/2/2014

Page 128

Pond SWM4: SWM4

Printed 7/2/2014

Page 129

Summary for Pond SWM5: SWM5

58.557 ac, 14.43% Impervious, Inflow Depth = 5.01" for 100-Year event Inflow Area = Inflow 182.43 cfs @ 12.37 hrs. Volume= 24.434 af Outflow 146.53 cfs @ 12.59 hrs, Volume= 24.053 af, Atten= 20%, Lag= 13.2 min 0.67 cfs @ 12.48 hrs, Volume= Primary 1.847 af Secondary = 125.35 cfs @ 12.59 hrs, Volume= 21.709 af Tertiary 20.54 cfs @ 12.59 hrs, Volume= 0.498 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 521.52' @ 12.59 hrs Surf.Area= 49,233 sf Storage= 197,776 cf

Plug-Flow detention time= 118.0 min calculated for 24.053 af (98% of inflow)

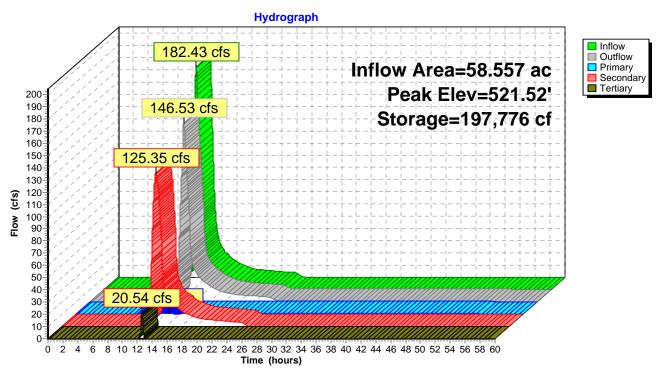
Center-of-Mass det. time= 108.6 min (946.0 - 837.3)

Volume	Invert	Avail.Sto	rage Sto	orage D	escription			
#1	516.00'	221,75	3 cf C u	stom S	tage Data (Pr	rismatic)	Listed below	(Recalc)
Elevatio	n Surf	f.Area	Inc.Sto		Cum.Store			
(fee	t)	(sq-ft)	(cubic-fee	et)	(cubic-feet)			
516.0	0 2	3,707		0	0			
518.0	0 3	1,902	55,6	09	55,609			
520.0	0 4	1,263	73,1	65	128,774			
522.0	0 5	1,716	92,9	79	221,753			
Device	Routing	Invert	Outlet D	evices				
#1	Primary	516.00'	5.0" Ro	und Cu	llvert			
	•		L= 90.0'	CPP,	projecting, no	headwa	II, Ke= 0.900	
			Inlet / O	utlet Inv	ert= 516.00' /	515.00'	S= 0.0111 '/'	' Cc= 0.900
			n = 0.015	, Flow	Area = 0.14 sf	f		
#2	Secondary	512.00'	30.0" R	ound C	ulvert X 3.00			
			L = 270.0)' RCP	, groove end v	w/headw	all, Ke= 0.20	0
			Inlet / O	utlet Inv	ert= 512.00' /	505.00'	S= 0.0259 '/'	' Cc= 0.900
			n = 0.020), Flow	Area= 4.91 sf	f		
#3	Device 2	518.40'	30.0" Ho	oriz. Ori	ifice/Grate X	3.00 C=	= 0.600	
			Limited t	o weir f	low at low hea	ads		
#4	Tertiary	521.00'	20.0' lor	ng x 30	.0' breadth B	road-Cro	ested Rectan	ngular Weir

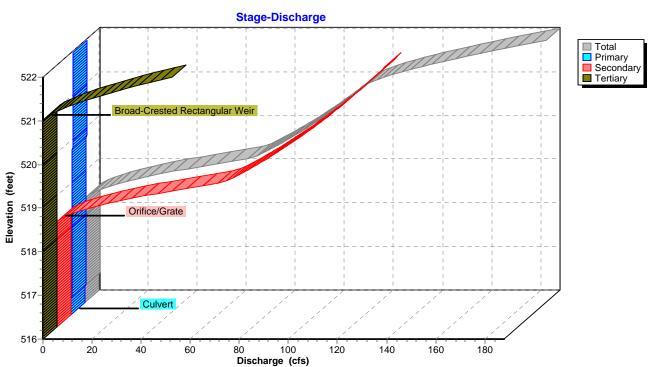
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63

Primary OutFlow Max=0.67 cfs @ 12.48 hrs HW=521.39' TW=516.19' (Dynamic Tailwater) 1=Culvert (Outlet Controls 0.67 cfs @ 4.89 fps)

Secondary OutFlow Max=125.33 cfs @ 12.59 hrs HW=521.52' TW=508.92' (Dynamic Tailwater)


2=Culvert (Passes 125.33 cfs of 157.26 cfs potential flow)

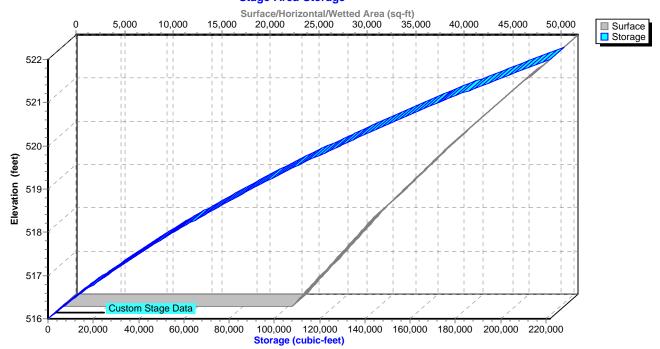
3=Orifice/Grate (Orifice Controls 125.33 cfs @ 8.51 fps)


Tertiary OutFlow Max=20.49 cfs @ 12.59 hrs HW=521.52' TW=516.59' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Weir Controls 20.49 cfs @ 1.95 fps)

Printed 7/2/2014 Page 130

Pond SWM5: SWM5

Pond SWM5: SWM5



Printed 7/2/2014

Page 131

Pond SWM5: SWM5

Stage-Area-Storage

Printed 7/2/2014

Page 132

Summary for Pond SWM6: SWM6

[62] Hint: Exceeded Reach A105R OUTLET depth by 4.20' @ 16.84 hrs

Inflow Area = 99.370 ac, 16.15% Impervious, Inflow Depth = 3.16" for 100-Year event

Inflow = 215.85 cfs @ 12.36 hrs, Volume= 26.171 af

Outflow = 17.92 cfs @ 16.24 hrs, Volume= 25.291 af, Atten= 92%, Lag= 232.6 min

Primary = 17.92 cfs @ 16.24 hrs, Volume= 25.291 af

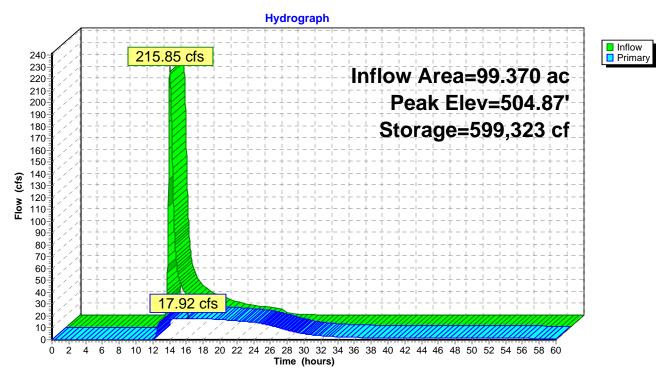
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 504.87' @ 16.24 hrs Surf.Area= 160,790 sf Storage= 599,323 cf

Plug-Flow detention time= 549.5 min calculated for 25.283 af (97% of inflow)

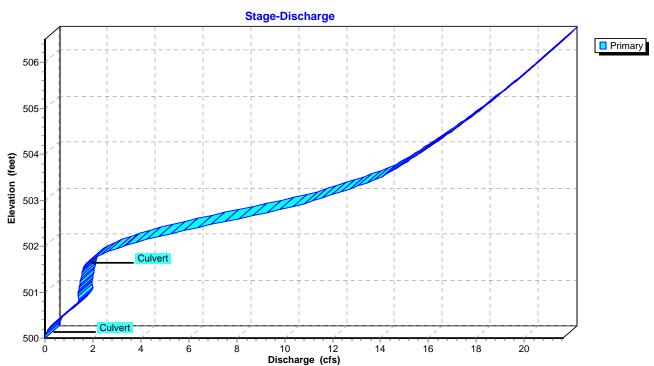
Center-of-Mass det. time= 527.5 min (1,432.4 - 904.9)

<u>Volume</u>	Inv	<u>ert Avail.Sto</u>	rage Sto	rage Description	
#1	500.0	00' 877,73	30 cf Cu	stom Stage Data (P	Prismatic)Listed below (Recalc)
Elevation	on	Surf.Area	Inc.Sto	re Cum.Store	
(fee	et)	(sq-ft)	(cubic-fee	et) (cubic-feet)	
500.0	00	64,186		0 0	
501.0	00	99,879	82,03	82,033	
502.0	00	122,401	111,14	193,173	
504.0	00	148,997	271,39	98 464,571	
506.0	00	176,108	325,10	789,676	
506.	50	176,108	88,0	54 877,730	
Device	Routing	Invert	Outlet D	evices	
#1	Primary	500.00'	8.0" Ro	und Culvert	
			L = 135.0	RCP, groove end	projecting, Ke= 0.200
			Inlet / Ou	utlet Invert= 500.00' /	498.50' S= 0.0111 '/' Cc= 0.900
			n = 0.012	., Flow Area= 0.35 s	f
#2	Primary	501.50'	18.0" R	ound Culvert	
			L = 105.0	RCP, groove end	projecting, Ke= 0.200
			Inlet / O	utlet Invert= 501.50' /	500.00' S= 0.0143 '/' Cc= 0.900

Primary OutFlow Max=17.92 cfs @ 16.24 hrs HW=504.87' TW=0.00' (Dynamic Tailwater)

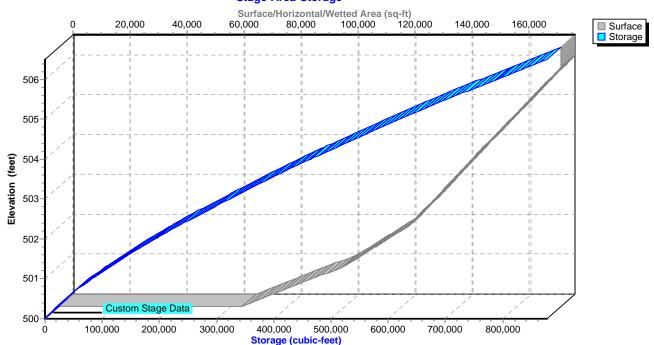

n= 0.012, Flow Area= 1.77 sf

1=Culvert (Barrel Controls 2.46 cfs @ 7.04 fps)


-2=Culvert (Barrel Controls 15.46 cfs @ 8.75 fps)

Printed 7/2/2014 Page 133

Pond SWM6: SWM6


Pond SWM6: SWM6

Printed 7/2/2014 Page 134

Pond SWM6: SWM6

Stage-Area-Storage

Volume

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 135

Summary for Pond SWM7: SWM7

Inflow Area = 4.590 ac, 29.85% Impervious, Inflow Depth = 5.52" for 100-Year event

Inflow = 22.16 cfs @ 12.21 hrs, Volume= 2.112 af

Outflow = 10.84 cfs @ 12.52 hrs, Volume= 2.112 af, Atten= 51%, Lag= 18.4 min

Primary = 10.84 cfs @ 12.52 hrs, Volume= 2.112 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 747.10' @ 12.52 hrs Surf.Area= 7,059 sf Storage= 26,437 cf

Plug-Flow detention time= 62.2 min calculated for 2.111 af (100% of inflow)

Avail.Storage Storage Description

Center-of-Mass det. time= 62.3 min (880.1 - 817.8)

Invert

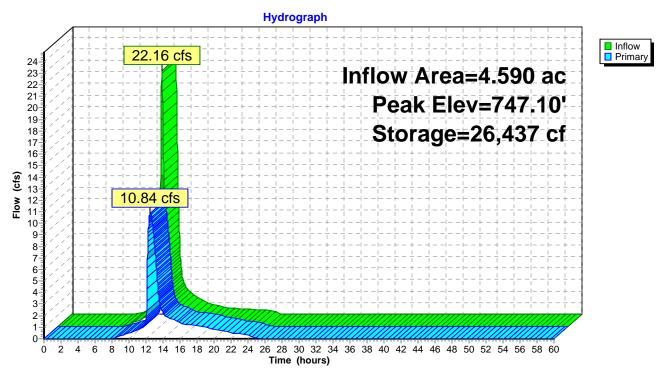
		, , , , , , , , , , , ,	.a.g. Cto.a.g.		
#1	740.00'	33,20	03 cf Custom	Stage Data (Pr	rismatic)Listed below (Recalc)
Elevation		urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
740.0	00	1,005	0	0	
741.0	00	1,611	1,308	1,308	
742.0	00	2,307	1,959	3,267	
743.0	00	3,095	2,701	5,968	
744.0	00	3,949	3,522	9,490	
745.0	00	4,882	4,416	13,906	
746.0	00	5,886	5,384	19,290	
747.0	00	6,942	6,414	25,704	
748.0	00	8,056	7,499	33,203	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	740.00'	30.0" Round	Culvert	
	,		L= 60.0' RCF	P, groove end pr	rojecting, Ke= 0.200
			Inlet / Outlet In	nvert= 740.00' /	739.00' S= 0.0167 '/' Cc= 0.900
			n= 0.012, Flo	w Area= 4.91 sf	
#2	Device 1	740.00'	5.0" Vert. Ori	fice/Grate C=	0.600
#3	Device 1	743.80'	5.0" Vert. Ori	fice/Grate C=	0.600
#4	Device 1	744.40'	10.0" Vert. O	rifice/Grate X 2.	.00 C= 0.600
#5	Device 1	747.10'	20.0' long x	5.0' breadth Bro	oad-Crested Rectangular Weir
			Head (feet) 0	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.5	50 4.00 4.50 5	.00 5.50
			Coef. (English	n) 2.34 2.50 2.	70 2.68 2.68 2.66 2.65 2.65 2.65
			2.65 2.67 2.6	66 2.68 2.70 2	.74 2.79 2.88

Primary OutFlow Max=10.84 cfs @ 12.52 hrs HW=747.10' TW=719.86' (Dynamic Tailwater)

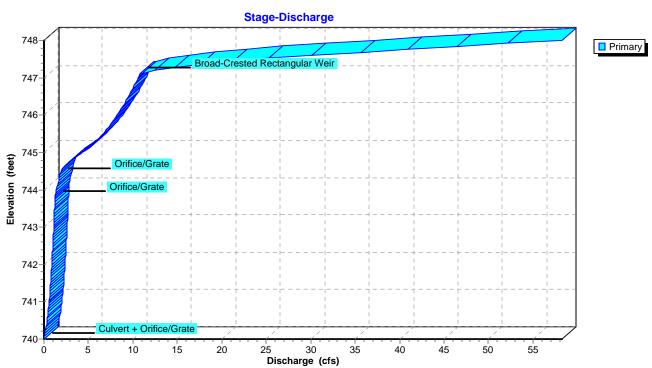
1=Culvert (Passes 10.84 cfs of 71.48 cfs potential flow)

2=Orifice/Grate (Orifice Controls 1.72 cfs @ 12.64 fps)

-3=Orifice/Grate (Orifice Controls 1.16 cfs @ 8.47 fps)


-4=Orifice/Grate (Orifice Controls 7.94 cfs @ 7.28 fps)

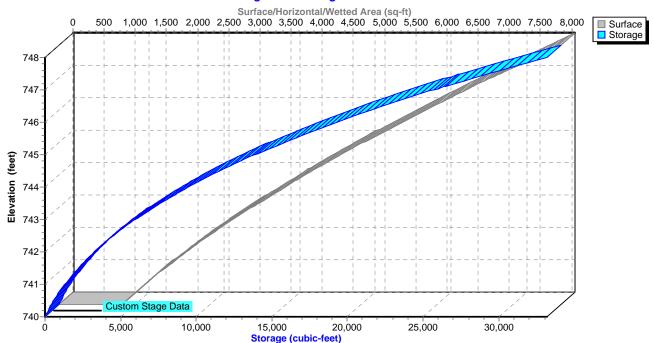
-5=Broad-Crested Rectangular Weir (Weir Controls 0.01 cfs @ 0.15 fps)


Page 136

Printed 7/2/2014

Pond SWM7: SWM7

Pond SWM7: SWM7



Printed 7/2/2014

Page 137

Pond SWM7: SWM7

Stage-Area-Storage

Prepared by VHB Engineering, Surveying and Landscape Architecture P.C HydroCAD® 10.00 s/n 01038 © 2013 HydroCAD Software Solutions LLC

Printed 7/2/2014

Page 138

Summary for Pond SWM8: SWM8

Inflow Area = 15.712 ac, 18.18% Impervious, Inflow Depth = 4.48" for 100-Year event

Inflow 45.35 cfs @ 12.46 hrs. Volume= 5.871 af

Outflow 27.42 cfs @ 12.82 hrs, Volume= 5.868 af, Atten= 40%, Lag= 21.7 min

27.42 cfs @ 12.82 hrs, Volume= Primary 5.868 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 657.39' @ 12.82 hrs Surf.Area= 14,073 sf Storage= 70,453 cf

Plug-Flow detention time= 82.8 min calculated for 5.866 af (100% of inflow)

Center-of-Mass det. time= 83.1 min (937.5 - 854.5)

Volume	Inver	t Avail.Sto	rage Storag	ge Description	
#1	650.00)' 79,27	75 cf Custo	m Stage Data (Prismatic)Listed below (Recalc)	
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
650.0		5,538	0	0	
652.0	-	7,499	13,037	13,037	
654.0		9,725	17,224	30,261	
656.0		12,197	21,922	52,183	
658.0	00	14,895	27,092	79,275	
Device	Routing	Invert	Outlet Devic	ces	
#1	Primary	650.00'	36.0" Roun	nd Culvert	
	•		L= 90.0' R0	CP, groove end projecting, Ke= 0.200	
			Inlet / Outlet	t Invert= 650.00' / 648.00' S= 0.0222 '/' Cc= 0.900	
			n= 0.010, F	low Area= 7.07 sf	
#2	Device 1	650.00'	5.0" Vert. O	Prifice/Grate C= 0.600	
#3	Device 1	652.00'	15.0" Vert. (Orifice/Grate C= 0.600	
#4	Device 1	654.40'	15.0" Vert. (Orifice/Grate C= 0.600	
#5	Device 1	656.50'	1.5' long x	1.0' breadth Broad-Crested Rectangular Weir	
				0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00)
			2.50 3.00		
			Coef. (Englis	sh) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31	
			3.30 3.31 3		
#6	Device 1	657.50'		x 1.0' breadth Broad-Crested Rectangular Weir	
				0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00)
			2.50 3.00		
				sh) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31	
			3.30 3.31 3		
			3.30 3.31 3	3.32	

Primary OutFlow Max=27.41 cfs @ 12.82 hrs HW=657.39' TW=626.48' (Dynamic Tailwater)

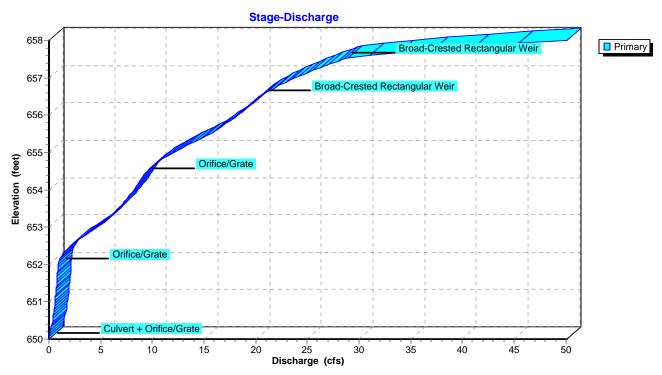
1=Culvert (Passes 27.41 cfs of 103.26 cfs potential flow)

2=Orifice/Grate (Orifice Controls 1.76 cfs @ 12.90 fps)

-3=Orifice/Grate (Orifice Controls 12.90 cfs @ 10.51 fps)

-4=Orifice/Grate (Orifice Controls 9.09 cfs @ 7.41 fps)

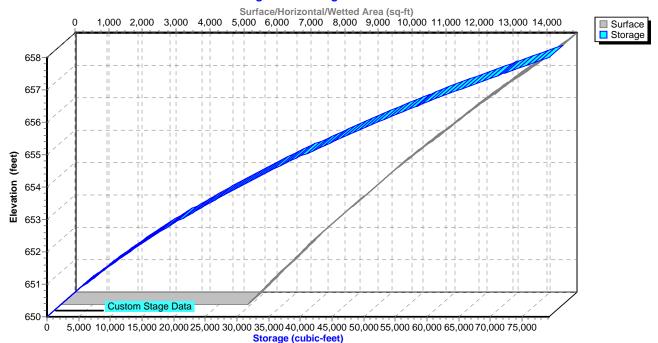
-5=Broad-Crested Rectangular Weir (Weir Controls 3.67 cfs @ 2.75 fps)


-6=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 7/2/2014 Page 139

Pond SWM8: SWM8

Pond SWM8: SWM8



Printed 7/2/2014

Page 140

Pond SWM8: SWM8

Stage-Area-Storage

Printed 7/2/2014

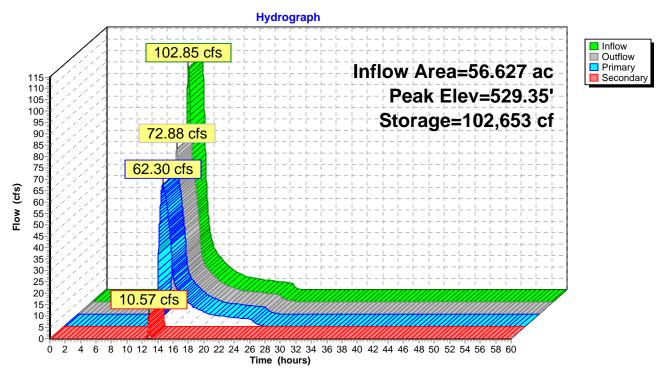
Page 141

Summary for Pond WF: Water Feature

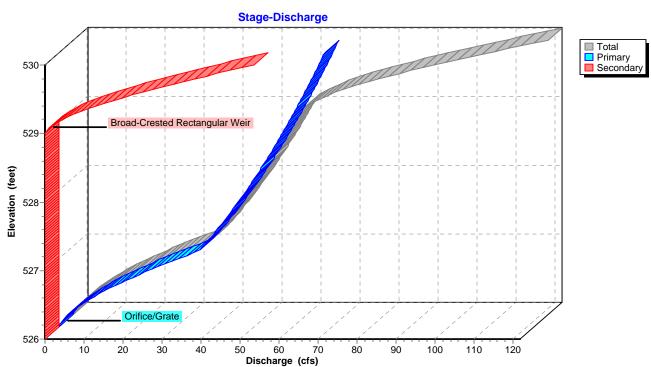
Inflow Area = 56.627 ac, 6.87% Impervious, Inflow Depth = 3.09" for 100-Year event Inflow = 102.85 cfs @ 12.55 hrs, Volume= 14.575 af Outflow = 72.88 cfs @ 12.85 hrs, Volume= 14.575 af, Atten= 29%, Lag= 18.3 min Primary = 62.30 cfs @ 12.85 hrs, Volume= 14.331 af Secondary = 10.57 cfs @ 12.85 hrs, Volume= 0.244 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs / 3 Peak Elev= 529.35' @ 12.85 hrs Surf.Area= 34,415 sf Storage= 102,653 cf

Plug-Flow detention time= 22.6 min calculated for 14.570 af (100% of inflow) Center-of-Mass det. time= 22.8 min (909.2 - 886.4)

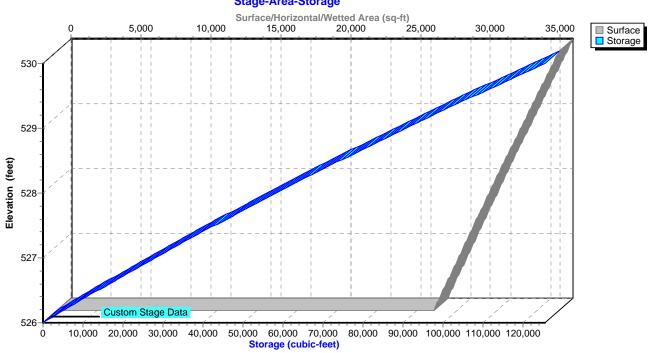

Volume	Invert	Avail.Sto	rage Storag	ge Description	
#1	526.00'	125,47	'4 cf Custo	m Stage Data (Pi	rismatic)Listed below (Recalc)
	•		. 0.	0 0	
Elevatio		f.Area	Inc.Store	Cum.Store	
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
526.0	0 2	6,946	0	0	
528.0	0 3	31,311	58,257	58,257	
530.0	0 3	5,906	67,217	125,474	
Device	Routing	Invert	Outlet Device	ces	
#1	Primary	520.00'	36.0" Rour	nd Culvert	
	•		L= 225.0' I	RCP, groove end p	projecting, Ke= 0.200
					513.00' S= 0.0311 '/' Cc= 0.900
			n= 0.015, F	low Area= 7.07 sf	:
#2	Device 1	526.00'	•	. Orifice/Grate	
			Limited to w	eir flow at low hea	ads
#3	Secondary	529.00'	20.0' long	x 10.0' breadth B	road-Crested Rectangular Weir
	•		Head (feet)	0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60
			, ,		70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=62.30 cfs @ 12.85 hrs HW=529.35' TW=514.51' (Dynamic Tailwater)
1=Culvert (Passes 62.30 cfs of 112.83 cfs potential flow)
2=Orifice/Grate (Orifice Controls 62.30 cfs @ 8.81 fps)


Secondary OutFlow Max=10.54 cfs @ 12.85 hrs HW=529.35' TW=514.51' (Dynamic Tailwater) 3=Broad-Crested Rectangular Weir (Weir Controls 10.54 cfs @ 1.50 fps)

Printed 7/2/2014 Page 142

Pond WF: Water Feature


Pond WF: Water Feature

Printed 7/2/2014 Page 143

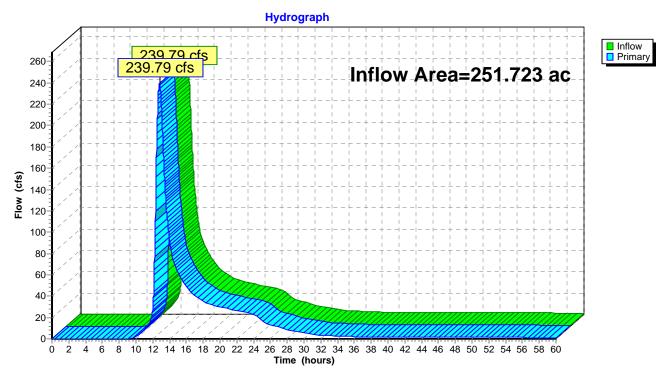
Pond WF: Water Feature

Stage-Area-Storage

Printed 7/2/2014

Page 144

Summary for Link A: Amenia Stream


Inflow Area = 251.723 ac, 9.32% Impervious, Inflow Depth > 3.28" for 100-Year event

Inflow = 239.79 cfs @ 12.80 hrs, Volume= 68.853 af

Primary = 239.79 cfs @ 12.80 hrs, Volume= 68.853 af, Atten= 0%, Lag= 0.0 min

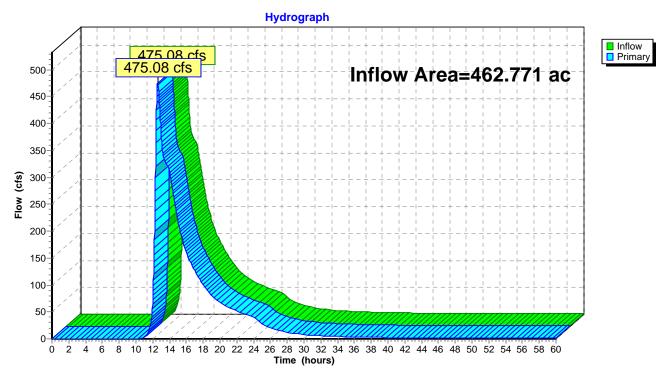
Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs

Link A: Amenia Stream

Printed 7/2/2014

Page 145

Summary for Link B: Wetland


Inflow Area = 462.771 ac, 8.42% Impervious, Inflow Depth > 4.20" for 100-Year event

Inflow = 475.08 cfs @ 12.58 hrs, Volume= 161.872 af

Primary = 475.08 cfs @ 12.58 hrs, Volume= 161.872 af, Atten= 0%, Lag= 0.0 min

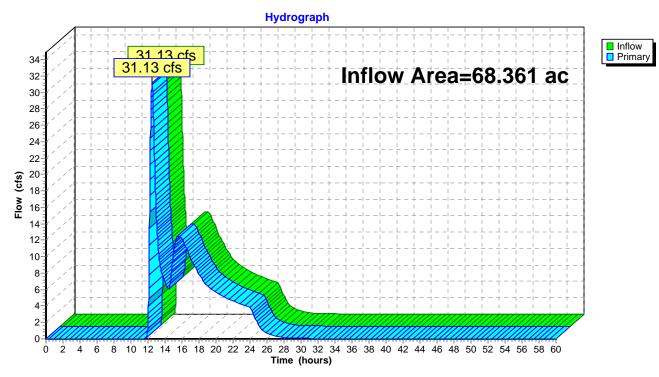
Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs

Link B: Wetland

Printed 7/2/2014

Page 146

Summary for Link C: Culvert


Inflow Area = 68.361 ac, 5.80% Impervious, Inflow Depth = 1.55" for 100-Year event

Inflow = 31.13 cfs @ 12.48 hrs, Volume= 8.822 af

Primary = 31.13 cfs @ 12.48 hrs, Volume= 8.822 af, Atten= 0%, Lag= 0.0 min

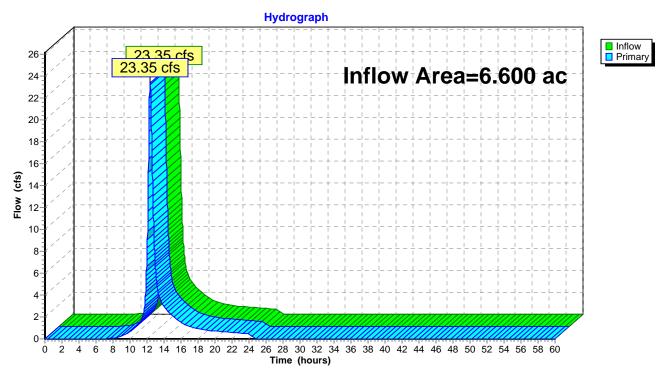
Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs

Link C: Culvert

Printed 7/2/2014

Page 147

Summary for Link D: Culvert


Inflow Area = 6.600 ac, 3.97% Impervious, Inflow Depth = 5.13" for 100-Year event

Inflow = 23.35 cfs @ 12.35 hrs, Volume= 2.822 af

Primary = 23.35 cfs @ 12.35 hrs, Volume= 2.822 af, Atten= 0%, Lag= 0.0 min

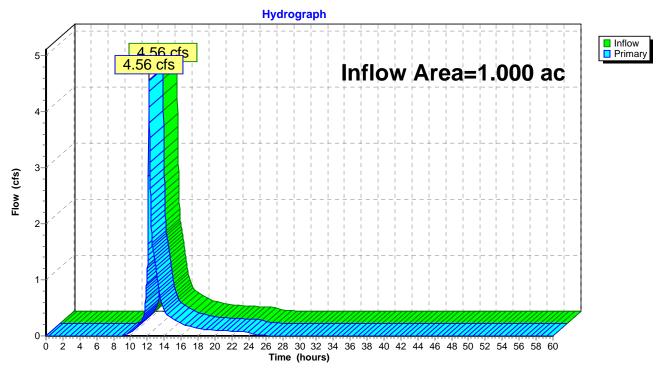
Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs

Link D: Culvert

Printed 7/2/2014

Page 148

Summary for Link Overlook-A (P1): Overlook A (Phase 1)


Inflow Area = 1.000 ac, 0.00% Impervious, Inflow Depth = 5.00" for 100-Year event

Inflow = 4.56 cfs @ 12.17 hrs, Volume= 0.417 af

Primary = 4.56 cfs @ 12.17 hrs, Volume= 0.417 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.02 hrs

Link Overlook-A (P1): Overlook A (Phase 1)

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606 Date: 5/15/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC
Checked By:

<u>Infiltration Basin Design -IB #B</u>

Step 1: Compute Water Quality Volumes

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 1.08 = 90% Rainfall Event Number from Figure #1

Rv: 0.1310 = 0.05 + 0.009(I) (Min. Rv =0.2) Use Rv = 0.2000

I: 9 = Impervious coverage percentage

A: 3.1 = Site Area to Basin (in acres)

WQv: $\underline{0.056}$ = Req'd Water Quality Volume (in ac-ft) = $\underline{(P)(Rv)(A)}$ 12

Step 2: Appropriateness Infiltration Basin for Site

Soil underneath the infiltration basin will be replaced with permeasible soil with at least 0.5 in/hour infiltration rate Also underdrain pipe will be provided to enhance the infiltration as suggested in SMDM

Infiltration basin is not located on area with slope greater than 15%

Infiltration basin is not located in fill soil

Bottom of infiltration basin is at lease 3 ft from ground water table (to be field verify)

Infiltration basin is at least 100 ft from water supply well

Infiltration basin is at least 25 ft from any structure

Step 3: Confirm local design criteria and applicability

Not applicable

Step 4: Calculate Pretreatment Volume

Pretreatment Requirements

Minimum Size: 25% of WQv = 0.0140 ac-ft 607.662 ft^3

Storage of Plunge Pool

								1	2
Contour		(Contour Area			Total	Total	Volume	Req'd WQ
Elev. (ft)	Proposed (ft ²)	Average (ft ²)	Proposed (ac)	Average (ac)	Depth (ft)	Volume (ft ³)	Volume (ac-ft)	Provided (ac-ft)	Volume (ac-ft)
` '			` ,	, ,	. ,		` ,	` ,	, ,
506	320		0.0073						
		419		0.0096	1	419	0.0096	0.0096	0.0140
507	519		0.0119						
		618		0.0142	1	618	0.0142	0.0238	0.0140
508	717		0.0165						

Step 5: Overflow Weir Sizing

(a) Compute peak water quality discharge (Qwq):

Compute modified CN for 1" rainfall

$$P = 1$$
 inch
 $Qa = WQv / Area$

$$CN = 1000 / [10 + 5P + 10Q_a - 10(Q_a^2 + 1.25*Q_a*P)^0.5]$$

From TR-55, Table 4-1: **Ia = 0.3 Ia / P =**

From TR-55, Exhibit 4-III: $q_u = 350 \text{ csm/in}$

$$Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$$

$$Q_{wq} = 0.37$$
 cfs

(b) Water quality weir design:

$$Q_{wq} = CLH^{3/2}$$

$$0.37 = 3.1 L^*(Hp^1.5)$$

Set weir elevation (infiltration basin) = 507.5

(c) 10-Year flow weir design:

$$Q_{10} = 4.7$$
 cfs

Design flow,
$$Q_{10d} = Q_{10} - Q_{wq}$$

= 4.65 - 0.37

0.300

$$Q_{10d} = CLH^{3/2}$$

$$4.28 = 3.1 L^*(Hp^1.5)$$

Overflow Velocity (ft/s) = Q10d / (weir width * depth) = 1.73 ft/s ok

Set weir elevation = 507.6

Design High Water Elevation = Weir Elevation + Hp

= 507.62 + 0.31

= 507.93

Top of Plunge Pool Elevation = 508.5 (6" freeboard)

Step 6: Determine Infiltration Basin Size

WQv Requirements:

100% WQv = 0.0558 ac-ft = 2430.648 ft³ Side Slope = 2 on 1

Storage of Infiltration Basin

								1	2
Contour		(Contour Area			Total	Total	Volume	Req'd WQ
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
506	936		0.0215						
		1177		0.0270	1	1177	0.0270	0.0270	0.0558
507	1419	1660	0.0326	0.0381	1	1660	0.0381	0.0651	0.0558
508	1901	1000	0.0436	0.0001	'	1000	0.0001	0.0001	0.0000

Determine Required WQv Elevation:

Required Water Quality Volume (WQv) = $\frac{\text{Elev. (ft)}}{\text{X}}$ $\frac{\text{Cumulative Volume (ac-ft)}}{\text{Volume (ac-ft)}}$ Water Quality Storage Elevation Range: High: Low: $\frac{508.00}{507.00}$ $\frac{0.0651}{0.0270}$

Required water quality elevation, X = 507.8 ft

Required Water quality volume at elevation X = 0.0558 ac-ft

Provided water quality elevation = 508.0 ft
Provided water quality volume = 0.0651 ac-ft
Depth of WQ elevation = 24.0 in

Provide 4" PVC underdrain pipe at inv. 504

Other Requirements

a) Determine Infiltration basin to dewater within 48 hours

Infiltration rate = 0.5 in/hr

Time of infiltration = Depth of ponding / infiltration rate $= \frac{24.0}{0.500}$ = 48 hr ok

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606 Project: Silo Ridge
Project No: 29011

Calculated By: JC
Checked By:

Infiltration Basin Design -IB #B1

Step 1: Compute Water Quality Volumes

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 1.08 = 90% Rainfall Event Number from Figure #1 Rv: 0.1310 = 0.05 + 0.009(1)(Min. Rv = 0.2) Use Rv = 0.2000l: 9 = Impervious coverage percentage A: 0.76 = Site Area to Basin (in acres) WQv: 0.014 = Req'd Water Quality Volume (in ac-ft)

 $= \frac{\text{O.014}}{\text{P(Rv)(A)}}$

12

Step 2: Appropriateness Infiltration Basin for Site

Soil underneath the infiltration basin will be replaced with permeasible soil with at least 0.5 in/hour infiltration rate Also underdrain pipe will be provided to enhance the infiltration as suggested in SMDM Infiltration basin is not located on area with slope greater than 15%

Infiltration basin is not located in fill soil

Bottom of infiltration basin is at lease 3 ft from ground water table (to be field verify)

Infiltration basin is at least 100 ft from water supply well

Infiltration basin is at least 25 ft from any structure

Step 3: Confirm local design criteria and applicability

Not applicable

Step 4: Calculate Pretreatment Volume

Pretreatment Requirements

Minimum Size: 25% of WQv = 0.0034 ac-ft 148.9752 ft³

Storage of Plunge Pool

								1	2
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev. (ft)	Proposed (ft ²)	Average (ft ²)	Proposed (ac)	Average (ac)	Depth (ft)	Volume (ft ³)	Volume (ac-ft)	Provided (ac-ft)	Volume (ac-ft)
533	121	198	0.0028	0.0045	1	198	0.0045	0.0045	0.0034
534	274	100	0.0063	0.0040	'	100	0.0040	0.0040	0.0004

Step 5: Overflow Weir Sizing

(a) Compute peak water quality discharge (Qwq):

Compute modified CN for 1" rainfall

$$P = 1$$
 inch
Qa = WQv / Area

Qa = 0.22 inch

$$\mathsf{CN} = 1000 \, / \, [10 + 5\mathsf{P} + 10\mathsf{Q_a} - 10(\mathsf{Q_a}^2 + 1.25^*\mathsf{Q_a}^*\mathsf{P})^{\wedge}0.5]$$

CN = <u>86.7</u>

From TR-55, Table 4-1: 1a = 0.3Ia / P = 0.300

From TR-55, Exhibit 4-III: 350 csm/in $q_u =$

$$Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$$

 $Q_{wq} = 0.09$ cfs

(b) Water quality weir design:

Width of weir =
$$\frac{3}{}$$
 ft.

$$Q_{wq} = CLH^{3/2}$$

0.09 = 3.1*L*(Hp^1.5)
Hp = **0.05** ft

Set weir elevation (infiltration basin) =

(c) 10-Year flow weir design:

$$Q_{10} = 1.14$$
 cfs

Design flow,
$$Q_{10d}$$
 = $Q_{10} - Q_{wq}$ = 1.14 - 0.09 = 1.05 cfs

Width of weir = 5 ft.

$$Q_{10d} = CLH^{3/2}$$

 $1.05 = 3.1*L*(Hp^1.5)$
 $Hp =$ **0.17** ft

Set weir elevation = 533.85

534.01

Top of Plunge Pool Elevation = (6" freeboard)

Step 6: Determine Infiltration Basin Size

WQv Requirements:

100% WQv =
$$0.0137$$
 ac-ft
= 595.9008 ft³

Side Slope = 2 on 1

Storage of Infiltration Basin

								1	2
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
532 533	329 514	422 607	0.0076 0.0118	0.0097	1	422 607	0.0097 0.0139	0.0097 0.0236	0.0137 0.0137
534	699	00.	0.0160	0.0.00	·		0.0.00	0.0200	0.0.0

Determine Required WQv Elevation:

Required water quality elevation, $X = \frac{533.3}{}$ ft
Required Water quality volume at elevation $X = \frac{0.0137}{}$ ac-ft

Provided water quality elevation = 534.0 ft
Provided water quality volume = 0.0236 ac-ft
Depth of WQ elevation = 24.0 in

529

Provide 4" PVC underdrain pipe at inv.

Other Requirements

a) Determine Infiltration basin to dewater within 48 hours

Infiltration rate = 0.5 in/hr

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606

Date:	5/15/2014
Project:	Silo Ridge
Project No:	29011

Calculated By: JC
Checked By:

Infiltration Basin Design -IB #B2

Step 1: Compute Water Quality Volumes

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 1.08 = 90% Rainfall Event Number from Figure #1 Rv: 0.1310 = 0.05 + 0.009(1)(Min. Rv = 0.2) Use Rv = 0.2000l: 9 = Impervious coverage percentage A: 1.33 = Site Area to Basin (in acres) WQv: 0.024 = Req'd Water Quality Volume (in ac-ft) = (P)(Rv)(A)12

Step 2: Appropriateness Infiltration Basin for Site

Soil underneath the infiltration basin will be replaced with permeasible soil with at least 0.5 in/hour infiltration rate Also underdrain pipe will be provided to enhance the infiltration as suggested in SMDM Infiltration basin is not located on area with slope greater than 15% Infiltration basin is not located in fill soil Bottom of infiltration basin is at lease 3 ft from ground water table (to be field verify) Infiltration basin is at least 100 ft from water supply well Infiltration basin is at least 25 ft from any structure

Step 3: Confirm local design criteria and applicability

Not applicable

Step 4: Calculate Pretreatment Volume

<u>Pretreatment Requirements</u>

Minimum Size: 25% of WQv = 0.0060 ac-ft 260.7066 tt^3

Storage of Plunge Pool

								1	2
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
512	122	238	0.0028	0.0055	2	475	0.0109	0.0109	0.0060
514	353	250	0.0081	0.0000	2	473	0.0109	0.0109	0.0000

Step 5: Overflow Weir Sizing

(a) Compute peak water quality discharge (Qwq):

Compute modified CN for 1" rainfall

$$P = 1$$
 inch
Qa = WQv / Area

Qa = <u>0.22</u> inch

$$\mathsf{CN} = 1000 \, / \, [10 + 5\mathsf{P} + 10\mathsf{Q_a} - 10(\mathsf{Q_a}^2 + 1.25^*\mathsf{Q_a}^*\mathsf{P})^{\wedge}0.5]$$

CN = <u>86.7</u>

From TR-55, Table 4-1: la = 0.3 la / P = 0.300

From TR-55, Exhibit 4-III: $q_u = 350 \text{ csm/in}$

$$Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$$

 $Q_{wq} = 0.16$ cfs

(b) Water quality weir design:

Width of weir =
$$\frac{3}{}$$
 ft.

$$Q_{wq} = CLH^{3/2}$$
 $0.16 = 3.1*L*(Hp^1.5)$
 $Hp = 0.07$ ft

Set weir elevation (infiltration basin) = 513.7

(c) 10-Year flow weir design:

$$Q_{10} = 2.0$$
 cfs

Design flow,
$$Q_{10d}$$
 = $Q_{10} - Q_{wq}$ = $2.00 - 0.16$ = 1.84 cfs

Width of weir = 6 ft.

$$Q_{10d} = CLH^{3/2}$$

 $1.84 = 3.1*L*(Hp^1.5)$
 $Hp =$ **0.21** ft

Set weir elevation = 513.77

= 513.77 + 0.21

= 513.98 Top of Plunge Pool Elevation = 514.5

Step 6: Determine Infiltration Basin Size

Side Slope = 2 on 1

(6" freeboard)

Storage of Infiltration Basin

								1	2
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
512	545		0.0125						
513	759	652	0.0174	0.0150	1	652	0.0150	0.0150	0.0239
514	972	865	0.0223	0.0199	1	865	0.0199	0.0348	0.0239

Determine Required WQv Elevation:

		Fla (#)	Cumulative
		Elev. (ft)	Volume (ac-ft)
Required Water Quality Volume (V	VQv) =	Χ	0.0239
Water Quality Storage Elevation Range:	High:	514.00	0.0348
	Low:	513.00	0.0150

Required water quality elevation, $X = \frac{513.5}{}$ ft
Required Water quality volume at elevation $X = \frac{0.0239}{}$ ac-ft

Provided water quality elevation = 514.0 ft
Provided water quality volume = 0.0348 ac-ft
Depth of WQ elevation = 24.0 in

Provide 4" PVC underdrain pipe at inv.

509

Other Requirements

a) Determine Infiltration basin to dewater within 48 hours

Infiltration rate = 0.5 in/hr

Time of infiltration = Depth of ponding / infiltration rate = ____24.0___

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606 Date: 5/15/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC
Checked By:

Infiltration Basin Design -IB #C

Step 1: Compute Water Quality Volumes

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 1.08 = 90% Rainfall Event Number from Figure #1 Rv: 0.1310 = 0.05 + 0.009(1)(Min. Rv = 0.2) Use Rv = 0.2000l: 9 = Impervious coverage percentage A: 2.39 = Site Area to Basin (in acres) WQv: 0.043 = Req'd Water Quality Volume (in ac-ft) = (P)(Rv)(A)12

Step 2: Appropriateness Infiltration Basin for Site

Soil underneath the infiltration basin will be replaced with permeasible soil with at least 0.5 in/hour infiltration rate Also underdrain pipe will be provided to enhance the infiltration as suggested in SMDM Infiltration basin is not located on area with slope greater than 15% Infiltration basin is not located in fill soil Bottom of infiltration basin is at lease 3 ft from ground water table (to be field verify) Infiltration basin is at least 100 ft from water supply well Infiltration basin is at least 25 ft from any structure

Step 3: Confirm local design criteria and applicability

Not applicable

Step 4: Calculate Pretreatment Volume

Pretreatment RequirementsMinimum Size:25%of WQv =0.0108ac-ft468.4878ft3

Storage of Plunge Pool

		1	2						
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
546	448		0.0103						
		541		0.0124	1	541	0.0124	0.0124	0.0108
547	634		0.0146						
		727		0.0167	1	727	0.0167	0.0291	0.0108
548	820		0.0188						

Step 5: Overflow Weir Sizing

(a) Compute peak water quality discharge (Qwq):

Compute modified CN for 1" rainfall

$$P = 1$$
 inch
 $Qa = WQv / Area$
 $Qa = 0.22$ inch

$$CN = 1000 / [10 + 5P + 10Q_a - 10({Q_a}^2 + 1.25*{Q_a}*P)^0.5]$$

CN = <u>**86.7**</u>

From TR-55, Table 4-1: **Ia = 0.3**

la / P = 0.300

From TR-55, Exhibit 4-III: $q_u = 350 \text{ csm/in}$

$$Q_{wq} = (q_u)$$
(Site Area, ac/ 640 ac/ sq. mi)(Q_a)
 $Q_{wq} =$ **0.28** cfs

(b) Water quality weir design:

$$\begin{aligned} &Q_{wq} = \ CLH^{3/2} \\ &0.28 = 3.1^*L^*(Hp^1.5) \\ &Hp = & \textbf{0.13} & ft \end{aligned}$$

Set weir elevation (infiltration basin) = 547.5

(c) 10-Year flow weir design:

$$Q_{10} = 3.6$$
 cfs

Design flow,
$$Q_{10d}$$
 = $Q_{10} - Q_{wq}$ = $3.60 - 0.28$ = 3.32 cfs

Width of weir = 10 ft.

$$Q_{10d} = CLH^{3/2}$$

 $3.32 = 3.1*L*(Hp^1.5)$
 $Hp =$ **0.23** ft

Set weir elevation = 547.63

= 547.63 + 0.23

= 547.85

Top of Plunge Pool Elevation = 548.4 (6" freeboard)

Step 6: Determine Infiltration Basin Size

WQv Requirements:

Storage of Infiltration Basin

		1	2						
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
546	717	890	0.0165	0.0204	1	890	0.0204	0.0204	0.0430
547	1062	1235	0.0244	0.0204	1	1235	0.0204	0.0204	0.0430
548	1407		0.0323						

Determine Required WQv Elevation:

Required Water Quality Volume (WQv) = $\frac{\text{Cumulative }}{\text{Elev. (ft)}}$ Volume (ac-ft)

Water Quality Storage Elevation Range: High: $\frac{\text{S48.00}}{\text{548.00}}$ 0.0488

Required water quality elevation, X = 547.8 ft

Required Water quality volume at elevation X = 0.0430 ac-ft

Provided water quality elevation = 548.0 ft
Provided water quality volume = 0.0488 ac-ft
Depth of WQ elevation = 24.0 in

Low:

543

547.00

0.0204

Provide 4" PVC underdrain pipe at inv.

Other Requirements

a) Determine Infiltration basin to dewater within 48 hours

Infiltration rate = 0.5 in/hr

Time of infiltration = Depth of ponding / infiltration rate = $\frac{24.0}{0.500}$ = $\frac{48}{1000}$ hr ok

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606 Project: Silo Ridge
Project No: 29011

Calculated By: JC
Checked By:

Infiltration Basin Design -IB #D

Step 1: Compute Water Quality Volumes

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 1.08 = 90% Rainfall Event Number from Figure #1 Rv: 0.1310 = 0.05 + 0.009(1)(Min. Rv = 0.2) Use Rv = 0.2000l: 9 = Impervious coverage percentage A: 2.02 = Site Area to Basin (in acres) WQv: 0.036 = Req'd Water Quality Volume (in ac-ft) = (P)(Rv)(A)12

Step 2: Appropriateness Infiltration Basin for Site

Soil underneath the infiltration basin will be replaced with permeasible soil with at least 0.5 in/hour infiltration rate Also underdrain pipe will be provided to enhance the infiltration as suggested in SMDM Infiltration basin is not located on area with slope greater than 15% Infiltration basin is not located in fill soil Bottom of infiltration basin is at lease 3 ft from ground water table (to be field verify) Infiltration basin is at least 100 ft from water supply well Infiltration basin is at least 25 ft from any structure

Step 3: Confirm local design criteria and applicability

Not applicable

Step 4: Calculate Pretreatment Volume

Pretreatment RequirementsMinimum Size:25%of WQv =0.0091ac-ft395,9604ft3

Storage of Plunge Pool

-		1	2						
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev. (ft)	Proposed (ft ²)	Average (ft ²)	Proposed (ac)	Average (ac)	Depth (ft)	Volume (ft ³)	Volume (ac-ft)	Provided (ac-ft)	Volume (ac-ft)
520	117		0.0027						
		190		0.0044	1	190	0.0044	0.0044	0.0091
521	262		0.0060						
		335		0.0077	1	335	0.0077	0.0120	0.0091
522	407		0.0093						

Step 5: Overflow Weir Sizing

(a) Compute peak water quality discharge (Qwq):

Compute modified CN for 1" rainfall

$$P = 1$$
 inch
 $Qa = WQv / Area$
 $Qa = 0.22$ inch

CN =
$$1000 / [10 + 5P + 10Q_a - 10(Q_a^2 + 1.25*Q_a*P)^0.5]$$

CN = 86.7

From TR-55, Table 4-1: **la = 0.3**

From TR-55, Exhibit 4-III: $q_u = 350 \text{ csm/in}$

$$Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$$

 $Q_{wq} =$ **0.24** cfs

(b) Water quality weir design:

Width of weir =
$$\frac{4}{\text{M}}$$
 ft.
$$Q_{wq} = \text{CLH}^{3/2}$$

$$0.24 = 3.1 \text{*L*(Hp^1.5)}$$

$$Hp = \frac{0.07}{\text{M}}$$
 ft

Set weir elevation (infiltration basin) = 521.8

(c) 10-Year flow weir design:

Step 6: Determine Infiltration Basin Size

WQv Requirements:

$$100\%$$
 WQv = 0.0364 ac-ft = 1583.8416 ft³ Side Slope = 2 on 1

Storage of Infiltration Basin

		1	2						
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
520 521 522	1051 1387 1723	1219 1555	0.0241 0.0318 0.0396	0.0280 0.0357	1	1219 1555	0.0280 0.0357	0.0280 0.0637	0.0364 0.0364

Determine Required WQv Elevation:

		Elev. (ft)	Cumulative Volume (ac-ft)
Required Water Quality Volume (\	VQv) =	Χ	0.0364
Water Quality Storage Elevation Range:	High:	522.00	0.0637
	Low:	521.00	0.0280

Required water quality elevation, $X = \frac{521.2}{}$ ft Required Water quality volume at elevation $X = \frac{0.0364}{}$ ac-ft

Provided water quality elevation = 522.0 ft
Provided water quality volume = 0.0637 ac-ft
Depth of WQ elevation = 24.0 in

Provide 4" PVC underdrain pipe at inv.

517

Other Requirements

a) Determine Infiltration basin to dewater within 48 hours

Infiltration rate = 0.5 in/hr

Time of infiltration = Depth of ponding / infiltration rate = $\frac{24.0}{0.500}$

48 hr ok

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606

Date:	5/15/2014
Project:	Silo Ridge
Project No:	29011

Calculated By: JC
Checked By:

Infiltration Basin Design -IB #E3

Step 1: Compute Water Quality Volumes

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 1.08 = 90% Rainfall Event Number from Figure #1 Rv: 0.1310 = 0.05 + 0.009(1)(Min. Rv = 0.2) Use Rv = 0.2000l: 9 = Impervious coverage percentage A: 2.43 = Site Area to Basin (in acres) WQv: 0.044 = Req'd Water Quality Volume (in ac-ft) = (P)(Rv)(A)12

Step 2: Appropriateness Infiltration Basin for Site

Soil underneath the infiltration basin will be replaced with permeasible soil with at least 0.5 in/hour infiltration rate Also underdrain pipe will be provided to enhance the infiltration as suggested in SMDM Infiltration basin is not located on area with slope greater than 15% Infiltration basin is not located in fill soil Bottom of infiltration basin is at lease 3 ft from ground water table (to be field verify) Infiltration basin is at least 100 ft from water supply well Infiltration basin is at least 25 ft from any structure

Step 3: Confirm local design criteria and applicability

Not applicable

Step 4: Calculate Pretreatment Volume

<u>Pretreatment Requirements</u> Minimum Size: 25% of WQv = $\frac{0.0109}{476.3286}$ ac-ft

Storage of Plunge Pool

1		1	2						
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev. (ft)	Proposed (ft ²)	Average (ft ²)	Proposed (ac)	Average (ac)	Depth (ft)	Volume (ft ³)	Volume (ac-ft)	Provided (ac-ft)	Volume (ac-ft)
508	260	418	0.0060	0.0096	2	836	0.0192	0.0192	0.0109
510	576	410	0.0132	0.0090	2	030	0.0192	0.0192	0.0109

Step 5: Overflow Weir Sizing

(a) Compute peak water quality discharge (Qwq):

Compute modified CN for 1" rainfall

Qa = WQv / Area

Qa = <u>0.22</u> inch

$$CN = 1000 / [10 + 5P + 10Q_a - 10(Q_a^2 + 1.25*Q_a*P)^0.5]$$

CN = <u>86.7</u>

From TR-55, Table 4-1: la = 0.3 la / P = 0.300

From TR-55, Exhibit 4-III: $q_u = 350 \text{ csm/in}$

$$Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$$

 $Q_{wq} = 0.29$ cfs

(b) Water quality weir design:

$$Q_{wq} = CLH^{3/2}$$

$$0.29 = 3.1 L^*(Hp^1.5)$$

$$Hp = 0.10$$
 ft

Set weir elevation (infiltration basin) = 509.4

(c) 10-Year flow weir design:

$$Q_{10} = 3.7$$
 cfs

Design flow,
$$Q_{10d}$$
 = $Q_{10} - Q_{wq}$ = 3.65 - 0.29 = 3.36 cfs

Width of weir = 10 ft

$$Q_{10d} = CLH^{3/2}$$

$$3.36 = 3.1 L^*(Hp^1.5)$$

Overflow Velocity (ft/s) = Q10d / (weir width * depth) = 1.48 ft/s ok

Set weir elevation = 509.50

Design High Water Elevation = Weir Elevation + Hp

509.50 + 0.23

509.73

Top of Plunge Pool Elevation = 510.3 (6" freeboard)

Step 6: Determine Infiltration Basin Size

WQv Requirements:

100% WQv = 0.0437 ac-ft = 1905.3144 ft³ Side Slope = 2 on 1

Storage of Infiltration Basin

								1	2
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev.	Proposed	d Average Proposed Average			Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
509 510	3978 4546	4262	0.0913 0.1044	0.0978	1	4262	0.0978	0.0978	0.0437

Determine Required WQv Elevation:

Required Water Quality Volume (WQv) = $\frac{\text{Cumulative Volume (ac-ft)}}{\text{Water Quality Storage Elevation Range:}}$ $\frac{\text{Low:}}{\text{Elev. (ft)}}$ $\frac{\text{Cumulative Volume (ac-ft)}}{\text{Volume (ac-ft)}}$ $\frac{\text{Storage Elevation Range:}}{\text{Low:}}$

Required water quality elevation, X = 509.4 ft
Required Water quality volume at elevation X = 0.0437 ac-ft

Provided water quality elevation = 510.0 ft
Provided water quality volume = 0.0978 ac-ft
Depth of WQ elevation = 12.0 in

Provide 4" PVC underdrain pipe at inv.

507.5

Other Requirements

a) Determine Infiltration basin to dewater within 48 hours

Infiltration rate = 0.5 in/hr

Time of infiltration = Depth of ponding / infiltration rate

$$=$$
 12.0 0.500 $=$ 24 hr ok

Date:	5/27/2014
Project:	Silo Ridge
Project No:	29011

Calculated By: JC Checked By:

Infiltration Basin Design -SWM 11

Step 1: Compute Water Quality Volumes

Note: This infiltration basin (which is constructed during the golf phase) is designed to satisfy the East of Hudson standard because it received part of the runoff from the full built conditions. WQv from SWM 11 (constructed during golf phase) is not being considered in full built WQv & RRv analysis to be conservative.

NYSDEC Required Water Quality Volume (WQv):

Data:

	East of Hudson Standard								
P:	P: 2.8 = 1-year Rainfall Precipitation (in.)								
CN:	56	= CN value for developed condition							
Q:	0.17	= 1-year runoff (in.)							
A:	16.24	= Site Area to Basin (in acres)							
_	S= 1000/cn -10 S= 7.9								
Q=	(P-0.2S) ²								
	(P+0.8S)								
Q=	0.17								
WQv:	0.2248	= Req'd Water Quality Volume (in ac-ft) = (Q)(A) 12							

90% Rainfall Event Standard									
P:	1.08	= 90% Rainfall Event Number from Figure #1							
Rv:	0.1310	= 0.05 + 0.009(I) (Min. Rv =0.2) Use Rv = 0.2000							
l:	9	= Impervious coverage percentage							
A:	7.9	= Site Area to Basin (in acres)							
, wo									
WQv:	WQv: <u>0.142</u> = Req'd Water Quality Volume (in ac-ft)								
= (P)(Rv)(A)									
	12								

USE WQv =	0.2248 ac-ft	for design purposes
-----------	--------------	---------------------

Step 2: Appropriateness Infiltration Basin for Site

Soil underneath the infiltration basin will be replaced with permeasible soil with at least 0.5 in/hour infiltration rate Also underdrain pipe will be provided to enhance the infiltration as suggested in SMDM Infiltration basin is not located on area with slope greater than 15% Infiltration basin is not located in fill soil

Bottom of infiltration basin is at lease 3 ft from ground water table (to be field verify) Infiltration basin is at least 100 ft from water supply well Infiltration basin is at least 25 ft from any structure

Step 3: Confirm local design criteria and applicability

The town required the design to be done to East of Hudson standard.

Step 4: Calculate Pretreatment Volume

Pretreatment Requirements

Minimum Size: 25% of WQv = 0.0562 ac-ft 2448.35509 ft³

Storage of Plunge Pool

								1	2
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev.	Proposed				Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
509	944		0.0217						
		1434		0.0329	2	2867	0.0658	0.0658	0.0562
511	1923		0.0441						

Step 5: Overflow Weir Sizing

(a) Compute peak water quality discharge (Qwq):

Compute modified CN for 2.8" rainfall

$$CN = 1000 / [10 + 5P + 10Q_a - 10(Q_a^2 + 1.25*Q_a*P)^0.5]$$

0.517

From TR-55, Exhibit 4-III: $q_u = 180 \text{ csm/in}$

$$Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$$

$$Q_{wq} = 0.76$$
 cfs

(b) Water quality weir design:

$$Q_{wq} = CLH^{3/2}$$

$$0.76 = 3.1 L^*(Hp^1.5)$$

$$Hp = 0.08$$
 ft

Set weir elevation (infiltration basin) = 510.8

(c) 10-Year flow weir design:

Step 6: Determine Infiltration Basin Size

WQv Requirements:

100% WQv =
$$0.2248$$
 ac-ft
= 9793.42038 ft³
Side Slope = 2 on 1

Storage of Infiltration Basin

									2
Contour			Contour Area			Total	Total	Volume	Req'd WQ
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
509	4898	F200	0.1124	0.4405	4	F200	0.4405	0.4405	0.0040
510	5515	5206	0.1266	0.1195	'	5206	0.1195	0.1195	0.2248
010	0010	5823	0.1200	0.1337	1	5823	0.1337	0.2532	0.2248
511	6131		0.1407						

Determine Required WQv Elevation:

			Cumulative
		Elev. (ft)	Volume (ac-ft)
Required Water Quality Volume (V	VQv) =	X	0.2248
Water Quality Storage Elevation Range:	High:	511.00	0.2532
	Low:	510.00	0.1195

Required Water quality elevation, X =	<u>510.8</u>	ft
Required Water quality volume at elevation X =	0.2248	ac-ft

ok

Provided water quality elevation = 511.0 ft
Provided water quality volume = 0.2532 ac-ft
Depth of required WQ elevation = 24.0 in

Provide 4" PVC underdrain pipe at inv.

507.2

Other Requirements

a) Determine Infiltration basin to dewater within 48 hours

Date:	5/27/2014
Project:	Silo Ridge
Project No:	29011

Calculated	Ву:	JC
Checked	By:	

Wet Extended Detention Pond Design - (SMW #1) (refer to section 8.2 in SMDM)

Step 1: Compute Preliminary Runoff Control Volumes

Water Quality Volume Calculations

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 2.8 = 1-year Rainfall Precipitation (in.)

CN: 62 = CN value for developed condition

Q: 0.32 = 1-year runoff (in.)

A: 32.77 = Site Area to Basin (in acres)

$$S= 1000/\text{cn} -10$$

$$S= 6.1$$

$$Q= \frac{(P-0.2S)^2}{(P+0.8S)}$$

$$Q= 0.32$$

WQv: 0.878 = Req'd Water Quality Volume (in ac-ft) = $\frac{(Q)(A)}{12}$

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, WQv provided is already accounted for the 1-year storm.

Qp (peak control volume) and Qf (flood control volume) are not estimated at this step because several design iterations have been performed to archive the peak control volume & rate (step 8) and flood control volume & rate (step 9) using HydroCAD

Step 2: Appropriateness Stormwater Pond for Site

Drainage Area = 32.8 Ac
Existing ground at proposed pond outlet = 508'
Seasonal high water table is deeper than 500' (no ground water is observed)
(OK)

Step 2A: Determin Hazardous Class of Dam

Height of pond is less than 40 feet Storage of pond at normal water surface is less than 1000 ac-ft Therefore, the pond is classified as small class "A" dam.

Step 3: Confirm local design criteria and applicability

The town required the design to be done to East of Hudson standard.

Step 4: Determin Pretreatment Volume

Forebay Requirements

Minimum Size: 10% of WQv = $\frac{0.0878}{3826.72007}$ ac-ft 3826.72007 ft³

Step 5: Determine Permanent Pool Volume and ED Volume

Permanent Pool Requirements:

Minimum Size: 50% of WQv = $\underline{0.4392}$ ac-ft 19133.6004 ft³

Step 6: Determine Pond Geometry, Storage Available for Permanent Pool and WQv-ED

Forebay Storage Volume:

								1	2
Contour		Contour Area						Volume	Req'd Forebay
Elev. (ft)	Proposed (ft²)	Average (ft ²)	Proposed (ac)	Average (ac)	Depth (ft)	Volume (ft ³)	Volume (ac-ft)	Provided (ac-ft)	Volume (ac-ft)
508	367		0.0084						
		672		0.0154	2	1343	0.0308	0.0308	0.0878
510	976		0.0224						
		1409		0.0323	2	2818	0.0647	0.0955	0.0878
512	1842		0.0423						

Permanent Pool Storage Volume (including Forebay Volumes)

									1	2
Contour			Contour Are	а				Volume	Volume	Req'd Permanent
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Forebay Provided	Provided	Pool Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
508	2413		0.0554		_					
		3108		0.0713	2	6215	0.1427	0.0308	0.1735	0.4392
510	3802		0.0873		_					
		4610		0.1058	2	9219	0.2116	0.0647	0.4498	0.4392
512	5417		0.1244							

Set Permanent Pool Elevation (WQ_{PPE}) = 512.00 ft.

Required Water Quality Volume above Permanent Pool:

(Total Req'd Volume) (Permanent Pool Cumulative Volume)

*Balance of Required Water Quality Volume = 0.8785 - 0.4498 = 0.4287 ac-ft.

above permanent pool

Basin Volume (above Permanent Pool Elevation)

Contour		(Contour Are	ea				Cumulative Volume
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	above Permanent
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	Pool (ac-ft)
512	7259		0.1666					
		9559		0.2194	1	9559	0.2194	0.2194
513	11858		0.2722					
		14799		0.3397	1	14799	0.3397	0.5592
514	17739		0.4072					

Determine WQv-Extended Detention Elevation:

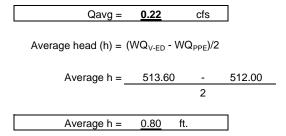
	_		
		Elev. (ft.)	Cumulative Volume
Required WQv-ED Volume	e/Elev =	Χ	0.4287
Basin Storage Elevation Range:	High:	514.00	0.5592
(above permanent pool elev)	Low:	513.00	0.2194

Required WQv-ED Volume = 0.4287 ac-ft

Required water quality elevation, $X = \underline{513.6}$ ft

Set Water Quality Elevation (WQv-ED)=	513.60	ft
Water quality volume provided =	0.878	ac-ft

Determine the required WQ v-ED orifice:


(Note: ED means extended detention.)

Balance of required WQv = 0.4287 ac-ft.

0.4287 x 43560 ft²/ac / (24 hr x 3600 sec/hr) Average ED release rate =

Average ED release rate = 0.22 cfs

*Size WQv-ED orifice:

*Use the orifice flow equation to calculate the required cross-sectional area and diameter for the WQV-ED orifice:

[Q=ca(sq. rt. (2gh))]

where:

c = 0.61

g = 32.2

Average h = 0.80

sqrt(2gh) =7.178

0.049 a=

Based upon: [a=Q/c (sq. rt. (2gh) Based upon: [D = sq. rt. (4a/3.142

Resulting diameter of orifice based upon area = D = 0.251 3.008

> For Design, Use a 3

in. diameter hole.

Orifice centerline elevation = Orifice invert + (Orifice size in feet/2)

Orifice centerline elevation =

Orifice centerline elevation = 512.13 ft.

Step 7: Determine Channel Protection Volume (CPv)

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, WQv provided is already accounted for the 1-year storm.

Step 8: Calculate Q_{p10} (10-year Storm) Release Rate and Water Surface Elevation

This pond is designed only for water quality purposes. No water quantity is provided because the overall water quantity requirement at study point B already achieved even without any detention from this pond.

Step 9: Calculate Qf₁₀₀ (100-year Storm) Release Rate and Water Surface Elevation

This pond is designed only for water quality purposes. No water quantity is provided because the overall water quantity requirement at study point B already achieved even without any detention from this pond.

Step 10: Calculate Safe Passage of Qf₁₀₀ (100-year Storm) and Set Top of Embankment Elevation

Note: Refer to HydroCAD output for these analysis.

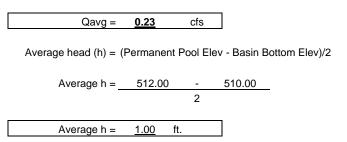
Qf100 (100-year Storm) water elevation =

1 ft

514.5'

Top of Embankment is set at elevation =

Freeboard provided =


515.5'

Other Requirements

a) Determine Pond Drain to dewater within 24 hours

Permanent Pool Volume = $\frac{0.4498}{400}$ ac-ft. Average release rate = $\frac{0.4498}{400}$ x 43560 ft²/ac / (24 hr x 3600 sec/hr) Average ED release rate = $\frac{0.2498}{400}$ x 43560 ft²/ac / (24 hr x 3600 sec/hr)

*Size Pond Drain orifice:

*Use the orifice flow equation to calculate the required cross-sectional area and diameter for the Pond Drain Orifice:

$$[Q=ca(sq. rt. (2gh))] \\ where: \\ c = 0.61 \\ g = 32.2 \\ Average h = 1.00 \\ a = 0.046 \\ sq. ft. \\ Based upon: [a=Q/c (sq. rt. (2gh))] \\ Resulting diameter of orifice based upon area = D = 0.243 \\ D = 2.915 \\ in. \\ \hline For Design, Use a 4 \\ in. diameter hole. \\ \hline Orifice centerline elevation = 0rifice invert + (Orifice size in feet/2) \\ Orifice centerline elevation = 508.00 + 0.17 \\ \hline Orifice centerline elevation = 508.17 \\ ft. \\ \hline Orifice centerline elevation = 508.17 \\ ft. \\ \hline Orifice centerline elevation = 508.17 \\ ft. \\ \hline Orifice centerline elevation = 508.17 \\ ft. \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.00 \\ \hline Orifice centerline elevation = 508.17 \\ \hline Orifice centerline elevation = 508.00 \\ \hline$$

Adjustable gate valve shall be provided to pond drain

- b) Pond liner is not required since the pond is not located in gravelly sands or fractured bedrock area. However liner will be provided if during construction verify the need of liner.
- c) Inlet pipes are partially submerged as suggested in SMDM and to ensure non-erosive condition.
- d) Riprap protection at the oulet has been size to prevent erosion. See Appendix E5
- e) Length to width ratio = 170/55 = 3:1 (minimum required is 1.5:1)
- f) Surface area to drainage area ratio = 0.17:32.8 = 1:193 (minimum required is 1:100)

 This SWM #1 itself does not satisfy the surface area to drainage area ratio eventhough it satisfy the WQv.

 However just uphill of this SWM #1 there is one water feature pond that wasn't take into consideration during the WQv calculation. Thus by considering the combined surface area of this water feature pond and SWM #1, the surface area to drainage ratio = 0.79/32.8 = 1/41.5
- g) Safety bench is not required since the design side slope is 4:1.
- h) Adequate aquatic bench is provided as shown in the site plan.
- i) There is no permanent structure within 25 ft buffer from the maximum water surface elevation of the pond
- j) The pond is easily accessible for maintenance via cart path and lot of open spaces

Date:	5/27/2014
Project:	Silo Ridge
Project No:	29011

Calculated By: JC Checked By:

Wet Extended Detention Pond Design -SMW #2 (refer to section 8.2 in SMDM)

Step 1: Compute Preliminary Runoff Control Volumes

Water Quality Volume Calculations

NYSDEC Required Water Quality Volume (WQv):

Data:

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, WQv provided is already accounted for the 1-year storm.

Qp (peak control volume) and Qf (flood control volume) are not estimated at this step because several design iterations have been performed to archive the peak control volume & rate (step 8) and flood control volume & rate (step 9) using HydroCAD

Step 2: Appropriateness Stormwater Pond for Site

Drainage Area = 44 Ac

Existing ground at proposed pond outlet = 493'

Seasonal high water table is deeper than 493' (no ground water is observed)

(OK)

Step 2A: Determin Hazardous Class of Dam

Height of pond is less than 40 feet

Storage of pond at normal water surface is less than 1000 ac-ft

Therefore, the pond is classified as small class "A" dam.

Step 3: Confirm local design criteria and applicability

The town required the design to be done to East of Hudson standard.

Step 4: Determine Pretreatment Volume

Forebay Requirements

Minimum Size: 10% of WQv = $\frac{0.3506}{15271.753}$ ft³

Step 5: Determine Permanent Pool Volume and ED Volume

Permanent Pool Requirements:

Minimum Size: 50% of WQv =

1.7530 ac-ft 76358.765 ft³

ED Volume will remaining of the WQv = WQv - Permanent Pool Volume

Step 6: Determine Pond Geometry, Storage Available for Permanent Pool and WQv-ED

Forebay Storage Volume:

								1	2
Contour		C	Contour Area					Volume	Req'd Forebay
Elev. (ft)	Proposed (ft²)	Average (ft ²)	Proposed (ac)	Average (ac)	Depth (ft)	Volume (ft ³)	Volume (ac-ft)	Provided (ac-ft)	Volume (ac-ft)
493	1401		0.0322						
		1763		0.0405	1	1763	0.0405	0.0405	0.3506
494	2124		0.0488						
		2538		0.0583	1	2538	0.0583	0.0987	0.3506
495	2951	0.400	0.0677	0.0707	_	0.400	0.0707	0.4777	
496	3909	3430	0.0897	0.0787	1	3430	0.0787	0.1775	0.3506
490	3909	4434	0.0037	0.1018	1	4434	0.1018	0.2792	0.3506
497	4959		0.1138						
		5533		0.1270	1	5533	0.1270	0.4063	0.3506
498	6107		0.1402						

Permanent Pool Storage Volume (including Forebay Volumes)

									1	2
Contour	Contour Area							Volume	Volume	Req'd Permanent
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Forebay Provided	Provided	Pool Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
493	10085		0.2315							
		10855		0.2492	1	10855	0.2492	0.0405	0.2896	1.7530
494	11624	12444	0.2669	0.2857	1	12444	0.2857	0.0583	0.6336	1.7530
495	13264		0.3045	0.2001	•		0.2007	0.0000	0.0000	1.7000
		14134		0.3456	1	14134	0.3245	0.0787	1.0368	1.7530
496	15004	45005	0.3444	0.0070	_	45005	0.0050	0.4040	4.5040	4.7500
497	16845	15925	0.3867	0.3879	1	15925	0.3656	0.1018	1.5042	1.7530
731	10040	17816	0.5007	0.4090	1	17816	0.4090	0.1270	2.0402	1.7530
498	18786		0.4313							

Set Permanent Pool Elevation (WQ_{PPE}) = 498.00 ft.

Required Water Quality Volume above Permanent Pool (WQv-ED):

(Permanent Pool Cumulative Volume) (Total Reg'd Volume) *Balance of Required Water Quality Volume = 3.5059 2.0402 1.4657 ac-ft. above permanent pool

Basin Volume (above Permanent Pool Elevation)

Contour		(Contour Area					Cum. Volume
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	above Permaner
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	Pool (ac-ft)
498	24893		0.5715					
		30624		0.7030	1	30624	0.7030	0.7030
499	36355	07004	0.8346	0.0000		07004	0.0000	4.5700
500	00000	37861	0.0007	0.8692	1	37861	0.8692	1.5722
500	39366	40925	0.9037	0.9395	1	40925	0.9395	2.5117
501	42483	40925	0.9753	0.9393	l '	40925	0.9393	2.5117
301	42400	44254	0.5755	1.0159	1	44254	1.0159	3.5276
502	46025		1.0566			0 .		0.02.0
		48021		1.1024	1	48021	1.1024	4.6300
503	50017		1.1482					
		52459		1.2043	1	52459	1.2043	5.8343
504	54900		1.2603					
		58185		1.3357	1	58185	1.3357	7.1700
505	61469		1.4111					
	,,	66347		1.5231	1	66347	1.5231	8.6931
506	71224		1.6351					

Determine WQv-Extended Detention Elevation:

		Cumulative
	Elev. (ft.)	Volume
Required WQv-ED Volume/Elev :	X	1.4657
Basin Storage Elevation Range: High	500.00	1.5722
(above permanent pool elev) Low	499.00	0.7030

Required WQv-ED Volume = $\frac{1.4657}{2}$ ac-ft Required water quality elevation, X = $\frac{499.9}{2}$ ft

Set Water Quality Elevation (WQv-ED)=	500.00	ft
Water quality volume provided =	3.506	ac-ft

Determine the required WQ v-ED orifice:

(Note: ED means extended detention.)

Required WQv-ED Volume = <u>1.4657</u> ac-ft.

Average ED release rate = $1.4657 \times 43560 \text{ ft}^2/\text{ac} / (24 \text{ hr} \times 3600 \text{ sec/hr})$

Average ED release rate = 0.74 cfs

*Size WQv-ED orifice:

$$Qavg = \underline{0.74} cfs$$
Average head (h) = (WQ_{V-ED} - WQ_{PPE})/2

^{*}Use the orifice flow equation to calculate the required cross-sectional area and diameter for the WQV-ED orifice:

[Q=ca(sq. rt. (2gh))] where: c = 0.61g = 32.2sqrt(2gh) =8.025 Average h = 1.000.151 sq. ft. Based upon: [a=Q/c (sq. rt. (2gh))] Resulting diameter of orifice based upon area = D = 0.438 Based upon: [D = sq. rt. (4a/3.142)]5.261 in. For Design, Use a 6 in. diameter hole. Orifice centerline elevation = Orifice invert + (Orifice size in feet/2) Orifice centerline elevation = 498.00

Step 7: Determine Channel Protection Volume (CPv)

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, WQv provided is already accounted for the 1-year storm.

498.25

ft.

Step 8: Calculate Q_{p10} (10-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qp10 is less than the existing conditions (Study Point B)

Orifice centerline elevation =

Step 9: Calculate Qf₁₀₀ (100-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qf100 is less than the existing conditions (Study Point B)

Step 10: Calculate Safe Passage of Qf₁₀₀ (100-year Storm) and Set Top of Embankment Elevation

Note: Refer to HydroCAD output for these analysis.

Qf100 (100-year Storm) water elevation = 505.7'

Top of Embankment is set at elevation = 506.8'

Freeboard provided = 1.1 ft

Other Requirements

a) Determine Pond Drain to dewater within 24 hours

Permanent Pool Volume = <u>2.0402</u> ac-ft.

Average release rate = $2.0402 \times 43560 \text{ ft}^2/\text{ac} / (24 \text{ hr } \times 3600 \text{ sec/hr})$

Average ED release rate = 1.03 cfs

*Size Pond Drain orifice:

Qavg =	<u>1.03</u>	cfs

Average head (h) = (Permanent Pool Elev - Basin Dewater Elev)/2

Average h = $\frac{1.00}{1.00}$ ft.

*Use the orifice flow equation to calculate the required cross-sectional area and diameter for the Pond Drain Orifice:

$$[Q=ca(sq. \ rt. \ (2gh))]$$

$$where:$$

$$c=0.61$$

$$g=32.2$$

$$Average h=1.00$$

$$a=0.210$$

$$Sq. ft.$$

$$D=\frac{0.517}{6.207}$$

$$Sq. ft.$$

$$D=\frac{0.517}{6.207}$$

$$Sq. ft.$$

$$Sased upon: [a=Q/c (sq. \ rt. (2gh))]$$

$$Sased upon: [D=sq. \ rt. (4a/3.142)]$$

$$Sq. ft.$$

$$Sased upon: [D=sq. \ rt. (4a/3.142)]$$

$$Sq. ft.$$

$$Sased upon: [D=sq. \ rt. (4a/3.142)]$$

$$Sq. ft.$$

$$Sq. ft.$$

$$Sased upon: [D=sq. \ rt. (4a/3.142)]$$

$$Sq. ft.$$

$$Sq. ft.$$

$$Sased upon: [D=sq. \ rt. (4a/3.142)]$$

$$Sq. ft.$$

Adjustable gate valve shall be provided to pond drain

- b) Pond liner is not required since the pond is not located in gravelly sands or fractured bedrock area. However liner will be provided if during construction verify the need of liner.
- c) Inlet pipes are partially submerged as suggested in SMDM and to ensure non-erosive condition.
- d) Riprap protection at the oulet has been size to prevent erosion. See Appendix E5
- e) Length to width ratio = 250/160 = 1.56:1 (minimum required is 1.5:1)
- f) Surface area to drainage area ratio = 0.57:44 = 1:77 (minimum required is 1:100)
- g) Safety bench is not required since the design side slope is 4:1.
- h) Adequate aquatic bench is provided as shown in the site plan.
- i) There is no permanent structure within 25 ft buffer from the maximum water surface elevation of the pond
- j) The pond is easily accessible for maintenance via cart path and lot of open spaces

Project: 5/27/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

Wet Extended Detention Pond Design -SMW #3 (refer to section 8.2 in SMDM)

Step 1: Compute Preliminary Runoff Control Volumes

Note: This Pond is designed for water quantity purposes only. No water quality is provided.

Qp (peak control volume) and Qf (flood control volume) are not estimated at this step because several design iterations have been performed to archive the peak control volume & rate (step 8) and flood control volume & rate (step 9) using HydroCAD

Step 2: Appropriateness Stormwater Pond for Site

Drainage Area = 248 Ac

These are existing pond. Under proposed condition, the ponds will be merged and improved the overall performance (OK)

Step 2A: Determin Hazardous Class of Dam

Height of pond is less than 40 feet

Storage of pond at normal water surface is less than 1000 ac-ft

Therefore, the pond is classified as small class "A" dam.

Step 3: Confirm local design criteria and applicability

The town required the design to be done to East of Hudson standard.

Step 4: Determine Pretreatment Volume

This step is not applicable since this pond is not for water quality surposes.

Step 5: Determine Permanent Pool Volume and ED Volume

This step is not applicable since this pond is not for water quality surposes.

Step 6: Determine Pond Geometry, Storage Available for Permanent Pool and WQv-ED

WQv-Ed is not applicable for this step. Below are the pond geometry and storage availability for detention

Basin Volume (above normal surface elevation)

Note: Normal surface elevation is set at 507'

Contour	Contour Area							Cumulative Volume
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	above Permanent
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	Pool (ac-ft)
507	353384		8.1126					
		359141		8.2447	1	359141	8.2447	8.2447
508	364897		8.3769					
540	100510	386708	0.0700	8.8776	2	773416	17.7552	25.9999
510	408519	4.40000	9.3783	40.4000	0	004050	00.0404	10.0100
E40	472420	440829	10.0010	10.1200	2	881658	20.2401	46.2400
512	473139		10.8618					

Step 7: Determine Channel Protection Volume (CPv)

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, overall WQv provided is already accounted for the 1-year storm.

Step 8: Calculate Q_{p10} (10-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qp10 is less than the existing conditions (Study Point B)

Step 9: Calculate Qf₁₀₀ (100-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qf100 is less than the existing conditions (Study Point B)

Step 10: Calculate Safe Passage of Qf₁₀₀ (100-year Storm) and Set Top of Embankment Elevation

Note: Refer to HydroCAD output for these analysis.

Qf100 (100-year Storm) water elevation = 510.80 Top of Embankment is set at elevation = 512.00

Freeboard provided = 1.2 ft

Other Requirements

a) Determine Pond Drain to dewater within 24 hours

Permanent Pool Volume = <u>25.0</u> ac-ft.

Average release rate = $25.0 \times 43560 \text{ ft}^2/\text{ac} / (24 \text{ hr} \times 3600 \text{ sec/hr})$

Average ED release rate = 12.60 cfs

*Size Pond Drain orifice:

Average head (h) = (Permanent Pool Elev - Basin Bottom Elev)/2

*Use the orifice flow equation to calculate the required cross-sectional area and diameter for the Pond Drain Orifice:

[Q=ca(sq. rt. (2gh))]

where:

c = 0.61

$$g = 32.2$$
 $sqrt(2gh) = 9.829$
Average h = 1.50 $a = 2.102$ sq. ft

a= 2.102 sq. ft. Based upon: [a=Q/c (sq. rt. (2gh))]

Resulting diameter of orifice based upon area = D = 1.636 ft. D = 19.633 in.

Based upon: [D = sq. rt. (4a/3.142)]

For Design, Use a **24** in. diameter hole.

Orifice centerline elevation = Orifice invert + (Orifice size in feet/2)

Orifice centerline elevation = 504.00 + 1.00

Orifice centerline elevation = 505.00 ft.

Adjustable gate valve shall be provided to pond drain

- b) Pond liner is not required since this is an modified existing pond.
 However liner will be provided if during construction verify the need of liner.
- c) Inlet pipes are partially submerged as suggested in SMDM and to ensure non-erosive condition.
- d) Riprap protection at the oulet has been size to prevent erosion. See Appendix E5
- e) Length to width ratio = 1400/430 = 3.2:1 (minimum required is 1.5:1)
- f) Surface area to drainage area ratio = 8.29:248 = 1:30 (minimum required is 1:100)
- g) Safety bench is not required since the design side slope is 4:1.
- h) Adequate aquatic bench is provided as shown in the site plan.
- i) There is no permanent structure within 25 ft buffer from the maximum water surface elevation of the pond
- j) The pond is easily accessible for maintenance via cart path and lot of open spaces

Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

Wet Extended Detention Pond Design -SMW #4 (refer to section 8.2 in SMDM)

Step 1: Compute Preliminary Runoff Control Volumes

Note: This Pond is designed for water quantity purposes only. No water quality is provided.

Qp (peak control volume) and Qf (flood control volume) are not estimated at this step because several design iterations have been performed to archive the peak control volume & rate (step 8) and flood control volume & rate (step 9) using HydroCAD

Step 2: Appropriateness Stormwater Pond for Site

Drainage Area = 196 Ac

These are existing pond. Under proposed condition, the ponds will be enlarged and improved the overall performance (OK)

Step 2A: Determin Hazardous Class of Dam

Height of pond is less than 40 feet

Storage of pond at normal water surface is less than 1000 ac-ft

Therefore, the pond is classified as small class "A" dam.

Step 3: Confirm local design criteria and applicability

The town required the design to be done to East of Hudson standard.

Step 4: Determine Pretreatment Volume

This step is not applicable since this pond is not for water quality surposes.

Step 5: Determine Permanent Pool Volume and ED Volume

This step is not applicable since this pond is not for water quality surposes.

Step 6: Determine Pond Geometry, Storage Available for Permanent Pool and WQv-ED

WQv-Ed is not applicable for this step. Below are the pond geometry and storage availability for detention

Basin Volume (above normal surface elevation)

Note: Normal surface elevation is set at 515'

Contour			Contour Are	ea				Cumulative Volume
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	above Permanent
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	Pool (ac-ft)
515	23225		0.5332					
		24523		0.5630	1	24523	0.5630	0.5630
516	25820		0.5927		_			
		29113		0.6683	2	58225	1.3367	1.8996
518	32405		0.7439					
500	400.40	36223	0.0400	0.8316	2	72445	1.6631	3.5627
520	40040		0.9192					

Step 7: Determine Channel Protection Volume (CPv)

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, overall WQv provided is already accounted for the 1-year storm.

Step 8: Calculate Q_{p10} (10-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qp10 is less than the existing conditions (Study Point B)

Step 9: Calculate Qf₁₀₀ (100-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qf100 is less than the existing conditions (Study Point B)

Step 10: Calculate Safe Passage of Qf₁₀₀ (100-year Storm) and Set Top of Embankment Elevation

Note: Refer to HydroCAD output for these analysis.

Qf100 (100-year Storm) water elevation = 519'
Top of Embankment is set at elevation = 520.5'

Freeboard provided = 1.5 ft

Other Requirements

- a) Location of this modified existing pond prohibit pond drain to be provided
- b) Pond liner is not required since this is an modified existing pond.
 However liner will be provided if during construction verify the need of liner.
- c) Inlet pipes are partially submerged as suggested in SMDM and to ensure non-erosive condition.
- d) Oulet pipes have been partially submerged at SWM 3 to prevent erosion.
- e) Length to width ratio = 260/100 = 2.6:1 (minimum required is 1.5:1)
- f) Surface area to drainage area ratio = 0.5:195 = 1:390 (minimum required is 1:100)

This is an existing pond that was being enlarged. The surface area to drainage area ratio is actually improved. Furthermore, SWM #3 which is located at downstream of SWM #4 receiving all the drainage area from SMW #4.

Therefore, the satisfaction of surface area to drainage area requirement in SMW #3 will also satisfy the SMW #4.

- g) Safety bench is not required since the design side slope is 4:1.
- h) Adequate aquatic bench is provided as shown in the site plan.
- i) There is no permanent structure within 25 ft buffer from the maximum water surface elevation of the pond
- j) The pond is easily accessible for maintenance via cart path and lot of open spaces

Date:	5/27/2014
Project:	Silo Ridge
Project No:	29011

Calculated By: JC Checked By:

Wet Extended Detention Pond Design -SMW #5 (refer to section 8.2 in SMDM)

Step 1: Compute Preliminary Runoff Control Volumes

Water Quality Volume Calculations

NYSDEC Required Water Quality Volume (WQv):

Data:

```
= 1-year Rainfall Precipitation (in.)
   P:
         2.8
 CN:
         77
               = CN value for developed condition
   Q:
        0.93 = 1-year runoff (in.)
       39.65 = Site Area to Basin (in acres)
  S= 1000/cn -10
  S = 3.0
 Q = (P-0.2S)^2
     (P+0.8S)
 Q=
       0.93
WQv:
       3.089 = Req'd Water Quality Volume (in ac-ft)
                = (Q)(A)
                    12
```

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, WQv provided is already accounted for the 1-year storm.

Qp (peak control volume) and Qf (flood control volume) are not estimated at this step because several design iterations have been performed to archive the peak control volume & rate (step 8) and flood control volume & rate (step 9) using HydroCAD

Step 2: Appropriateness Stormwater Pond for Site

Drainage Area = 39.7 Ac
Existing ground at proposed pond outlet = 512'
Seasonal high water table is = 509.5'
(OK)

Step 2A: Determin Hazardous Class of Dam

Height of pond is less than 39.7 feet
Storage of pond at normal water surface is less than 1000 ac-ft
Therefore, the pond is classified as small class "A" dam.

Step 3: Confirm local design criteria and applicability

The town required the design to be done to East of Hudson standard.

Step 4: Determine Pretreatment Volume

Forebay Requirements

Minimum Size: 10% of WQv = 0.3089 ac-ft 13455.0497 tt^3

Step 5: Determine Permanent Pool Volume and ED Volume

Permanent Pool Requirements:

Minimum Size: 50% of WQv = $\frac{1.5444}{67275.2487}$ ac-ft = $\frac{67275.2487}{100}$ ft³

ED Volume will remaining of the WQv = WQv - Permanent Pool Volume

Step 6: Determine Pond Geometry, Storage Available for Permanent Pool and WQv-ED

Forebay Storage Volume:

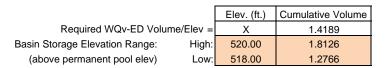
								1	2
Contour			Contour Are	ea				Volume	Req'd Forebay
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
512	1996		0.0458						
		2844		0.0653	2	5688	0.1306	0.1306	0.3089
514	3692		0.0848						
		4742		0.1088	2	9483	0.2177	0.3483	0.3089
516	5791		0.1329						

Permanent Pool Storage Volume (including Forebay Volumes)

									1	2
Contour		Contour Area						Volume	Volume	Req'd Permanent
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Forebay Provided	Provided	Pool Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
512	8256		0.1895	0.0400		04440		0.4000		
544	40057	10557	0.0050	0.2423	2	21113	0.4847	0.1306	0.6153	1.5444
514	12857	15387	0.2952	0.3532	2	30773	0.7065	0.3483	1.6700	1.5444
516	17916	15367	0.4113	0.3332	2	30773	0.7065	0.3463	1.6700	1.5444
310			5.110							

Set Permanent Pool Elevation (WQ_{PPE}) = 516.00 ft.

Required Water Quality Volume above Permanent Pool:


(Total Reg'd Volume) (Permanent Pool Cumulative Volume)

*Balance of Required Water Quality Volume = 3.0889 - 1.6700 = 1.4189 ac-ft.
above permanent pool

Basin Volume (above Permanent Pool Elevation)

Contour		-	Contour Are	ea				Cumulative Volume
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	above Permanent
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	Pool (ac-ft)
516	23707		0.5442					
		27805		0.6383	2	55609	1.2766	1.2766
518	31902		0.7324					
		39478		0.8398	2	78956	1.8126	3.0892
520	41263		0.9473					
		46490		1.0673	2	92979	2.1345	5.2237
522	51716		1.1872					

Determine WQv-Extended Detention Elevation:

Required WQv-ED Volume = 1.4189 ac-ft

Required water quality elevation, X = 518.5 ft

Set Water Quality Elevation (WQv-ED)=	518.50	ft
Water quality volume provided =	3.089	ac-ft

Determine the required WQ_V-ED orifice:

(Note: ED means extended detention.)

Balance of required WQv = $\frac{1.4189}{1.4189}$ ac-ft.

Average ED release rate = $1.4189 \times 43560 \text{ ft}^2/\text{ac} / (24 \text{ hr x } 3600 \text{ sec/hr})$

Average ED release rate = 0.72 cfs

*Size WQv-ED orifice:

Average head (h) = $(WQ_{V-ED} - WQ_{PPE})/2$

Average h = <u>1.25</u> ft.

*Use the orifice flow equation to calculate the required cross-sectional area and diameter for the WQV-ED orifice:

[Q=ca(sq. rt. (2gh))]

where:

c = 0.61

$$g = 32.2$$

Average
$$h = 1.25$$

sqrt(2gh) = 8.972a = 0.131 sq. ft.

Resulting diameter of orifice based upon area = D = 0.408 ft

D = 0.408 ft. D = 4.895 in. Based upon: [D = sq. rt. (4a/3.142)]

Based upon: [a=Q/c (sq. rt. (2gh))]

For Design, Use a 5 in. diameter hole.

Orifice centerline elevation = Orifice invert + (Orifice size in feet/2)

Orifice centerline elevation = 516.00 + 0.21

Orifice centerline elevation = 516.21 ft.

Step 7: Determine Channel Protection Volume (CPv)

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, WQv provided is already accounted for the 1-year storm.

Step 8: Calculate Q_{p10} (10-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qp10 is less than the existing conditions (Study Point B)

Step 9: Calculate Qf₁₀₀ (100-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qf100 is less than the existing conditions (Study Point B)

Step 10: Calculate Safe Passage of Qf₁₀₀ (100-year Storm) and Set Top of Embankment Elevation

Note: Refer to HydroCAD output for these analysis.

Qf100 (100-year Storm) water elevation = 521.5'

Top of Embankment is set at elevation = 522.5'

Freeboard provided = 1 ft

Other Requirements

a) Determine Pond Drain to dewater within 24 hours

Permanent Pool Volume = $\frac{1.6700}{\text{Average release rate}}$ ac-ft. $\frac{1.6700 \times 43560 \text{ ft}^2/\text{ac}}{\text{(24 hr x 3600 sec/hr)}}$ Average ED release rate = $\frac{0.84 \text{ cfs}}{\text{(24 hr x 3600 sec/hr)}}$

*Size Pond Drain orifice:

$$Qavg = \underbrace{0.84} \qquad cfs$$

$$Average head (h) = (Permanent Pool Elev - Basin Bottom Elev)/2$$

$$Average h = \underbrace{516.00}_{2} - \underbrace{512.00}_{2}$$

$$Average h = \underbrace{2.00}_{2} \quad ft.$$

*Use the orifice flow equation to calculate the required cross-sectional area and diameter for the Pond Drain Orifice:

Adjustable gate valve shall be provided to pond drain

- b) Pond liner is not required since the pond is not located in gravelly sands or fractured bedrock area However liner will be provided if during construction verify the need of liner.
- c) Inlet pipes are partially submerged as suggested in SMDM and to ensure non-erosive condition.
- d) Oulet pipes have been partially submerged at SWM 3 to prevent erosion.
- e) Length to width ratio = 400/100 = 4:1 (minimum required is 1.5:1)
- f) Surface area to drainage area ratio = 0.54:39.7 = 1:74 (minimum required is 1:100)
- g) Safety bench is not required since the design side slope is 4:1.
- h) Adequate aquatic bench is provided as shown in the site plan.
- i) There is no permanent structure within 25 ft buffer from the maximum water surface elevation of the pond
- j) The pond is easily accessible for maintenance via cart path and lot of open spaces

Date:	5/27/2014
Project:	Silo Ridge
Project No:	29011

Calculated By: JC
Checked By:

Wet Extended Detention Pond Design -SMW #6 (refer to section 8.2 in SMDM)

Step 1: Compute Preliminary Runoff Control Volumes

Water Quality Volume Calculations

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 2.8 = 1-year Rainfall Precipitation (in.)

CN: 60 = CN value for developed condition

Q: 0.26 = 1-year runoff (in.)

A: 84 = Site Area to Basin (in acres)

S= 1000/cn -10

S= 6.7

Q=
$$\frac{(P-0.2S)^2}{(P+0.8S)}$$

Q= 0.26

WQv: 1.851 = Req'd Water Quality Volume (in ac-ft) = $\frac{(Q)(A)}{12}$

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, WQv provided is already accounted for the 1-year storm.

Qp (peak control volume) and Qf (flood control volume) are not estimated at this step because several design iterations have been performed to archive the peak control volume & rate (step 8) and flood control volume & rate (step 9) using HydroCAD

Step 2: Appropriateness Stormwater Pond for Site

Drainage Area = 84 Ac

These are existing pond. Under proposed condition, the ponds will be merged and improved the overall performance

Step 2A: Determin Hazardous Class of Dam

Height of pond is less than 40 feet

Storage of pond at normal water surface is less than 1000 ac-ft

Therefore, the pond is classified as small class "A" dam.

(OK)

Step 3: Confirm local design criteria and applicability

The town required the design to be done to East of Hudson standard.

Step 4: Determine Pretreatment Volume

Forebay Requirements

Minimum Size: 10% of WQv = $\frac{0.1851}{8064.55082}$ ac-ft $\frac{6}{100}$

Step 5: Determine Permanent Pool Volume and ED Volume

Permanent Pool Requirements:

Minimum Size: 50% of WQv = 0.9257 ac-ft = 40322.7541 ft³

Step 6: Determine Pond Geometry, Storage Available for Permanent Pool and WQv-ED

Forebay Storage Volume:

								1	2
Contour			Contour Are	ea				Volume	Req'd Forebay
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Provided	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
494	13388		0.3073						
		14498		0.3328	1	14498	0.3328	0.3328	0.1851
495	15608		0.3583						
		16768		0.3849	1	16768	0.3849	0.7178	0.1851
496	17928		0.4116						
		19327		0.4437	1	19327	0.4437	1.1615	0.1851
497	20726		0.4758						
		22205		0.5098	1	22205	0.5098	1.6712	0.1851
498	23684		0.5437						

Permanent Pool Storage Volume (including Forebay Volumes)

									1	2
Contour		Contour Area						Volume	Volume	Req'd Permanent
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Forebay Provided	Provided	Pool Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
494	23154		0.5315							
404	20104	24486	0.0010	0.5621	1	24486	0.5621	0.3328	0.8949	0.9257
495	25818		0.5927							
496	28582	27200	0.6562	0.6244	1	27200	0.6244	0.3849	1.9043	0.9257
430	20002	30331	0.0302	0.6963	1	30331	0.6963	0.4437	3.0443	0.9257
497	32079		0.7364							
400	25057	34018	0.0055	0.7809	1	34018	0.7809	0.5098	4.3350	0.9257
498	35957	51599	0.8255	1.1845	1	51599	1.1845	0.0000	5.5195	0.9257
499	67240	0.000	1.5436			0.000		0.000	0.0100	0.020.
		70638		1.6216	1	70638	1.6216	0.0000	7.1412	0.9257
500	74035		1.6996							

Set Permanent Pool Elevation (WQ_{PPE}) = **500.00** ft.

Required Water Quality Volume above Permanent Pool:

*Balance of Required Water Quality Volume = 0.926 - 7.1412 = -6.2155 ac-ft.

above permanent pool

Note: Permanent Pool Provided more than 100% of WQv therefore extended detention for water quality is not needed

	Water quality volume provided =	7.141	ac-ft	
--	---------------------------------	-------	-------	--

Basin Volume (above Permanent Pool Elevation)

Contour			Contour Are	ea				Cumulative Volume
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	above Permanent
(ft)	(ft^2)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	Pool (ac-ft)
500	74035		1.6996					
		86957		1.9963	1	86957	1.9963	1.9963
501	99879		2.2929					
502	122401	111140	2.8099	2.5514	1	111140	2.5514	4.5477
		135699		3.1152	2	271398	6.2304	10.7781
504	148997		3.4205					
		162553		3.7317	2	325105	7.4634	18.2415
506	176108		4.0429					

Step 7: Determine Channel Protection Volume (CPv)

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, WQv provided is already accounted for the 1-year storm.

Step 8: Calculate Q_{p10} (10-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qp10 is less than the existing conditions (Study Point A)

Step 9: Calculate Qf₁₀₀ (100-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qf100 is less than the existing conditions (Study Point A)

Step 10: Calculate Safe Passage of Qf₁₀₀ (100-year Storm) and Set Top of Embankment Elevation

Note: Refer to HydroCAD output for these analysis.

Qf100 (100-year Storm) water elevation = 504.9'
Top of Embankment is set at elevation = 506.5'

Freeboard provided = 1.6 ft

Other Requirements

- a) Location of this modified existing pond prohibit pond drain to be provided
- b) Pond liner is not required since this is an modified existing pond.
 However liner will be provided if during construction verify the need of liner.
- c) Inlet pipes are partially submerged as suggested in SMDM and to ensure non-erosive condition.
- d) Oulet pipes have been partially submerged to prevent erosion.
- e) Length to width ratio = 730/140 = 5.2:1 (minimum required is 1.5:1)
- f) Surface area to drainage area ratio = 1.7:84 = 1:50 (minimum required is 1:100)
- g) Safety bench is not required since the design side slope is 4:1.
- h) Adequate aquatic bench is provided as shown in the site plan.
- i) There is no permanent structure within 25 ft buffer from the maximum water surface elevation of the pond
- j) The pond is easily accessible for maintenance via entrance road and lot of open spaces

Date:	5/22/2014
Project:	Silo Ridge
Project No:	29011

Calculated By: JC Checked By:

Pocket Pond Design -SMW #7A (Overlook area-Phase 1)

Step 1: Compute Preliminary Runoff Control Volumes

Water Quality Volume Calculations

NYSDEC Required Water Quality Volume (WQv):

```
= 1-year Rainfall Precipitation (in.)
         2.8
 CN:
       76.25
               = CN value for developed condition
  Q:
        0.90
                = 1-year runoff (in.)
   A:
         2.3
                = Site Area to Basin (in acres)
  S= 1000/cn -10
  S=
        3.1
 Q = (P-0.2S)^2
      (P+0.8S)
 Q=
        0.90
WQv: <u>0.172</u> = Req'd Water Quality Volume (in ac-ft)
                = (Q)(A)
                    12
```

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, WQv provided is already accounted for the 1-year storm.

Qp (peak control volume) and Qf (flood control volume) are not estimated at this step because several design iterations have been performed to archive the peak control volume & rate (step 8) and flood control volume & rate (step 9) using HydroCAD

Step 2: Appropriateness Stormwater Pond for Site

Drainage Area = 2.3 Ac
Existing ground at proposed pond outlet = 782'
Seasonal high water table is = 776' (to be field verify)
(OK)

Step 2A: Determin Hazardous Class of Dam

Height of pond is less than 40 feet Storage of pond at normal water surface is less than 1000 ac-ft Therefore, the pond is classified as small class "A" dam.

Step 3: Confirm local design criteria and applicability

The town required the design to be done to East of Hudson standard.

Step 4: Determine Pretreatment Volume

Forebay Requirements

Minimum Size: 10% of WQv = $\frac{0.0172}{747.862287}$ ac-ft

Step 5: Determine Permanent Pool Volume and ED Volume

Permanent Pool Requirements:

Minimum Size: 50% of WQv = 0.0858 ac-ft = 3739.31144 tt^3

ED Volume will remaining of the WQv = WQv - Permanent Pool Volume

Step 6: Determine Pond Geometry, Storage Available for Permanent Pool and WQv-ED

Forebay Storage Volume:

								1	2
Contour			Contour Are	ea				Cumulative	Req'd Forebay
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)
782	25		0.0006						
		148		0.0034	2	295	0.0068	0.0068	0.0172
784	270		0.0062						
		522		0.0120	2	1043	0.0239	0.0307	0.0172
786	773		0.0177						

Permanent Pool Storage Volume (including Forebay Volumes)

									1	2
Contour			Contour Are	ea				Volume	Cumulative	Req'd Permanent
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Forebay Provided	Total Volume	Pool Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
782	132		0.0030							
784	705	419	0.0162	0.0096	2	837	0.0192	0.0068	0.0260	0.0858
786	1536	1121	0.0353	0.0257	2	2241	0.0514	0.0307	0.1081	0.0858

Set Permanent Pool Elevation (WQ_{PPE}) = 786.00 ft.

Required Water Quality Volume above Permanent Pool:

Required Water Quality Volume above i erinanent i ooi.									
(Tot	(Permanent Pool Cumulative Volume)								
*Balance of Required Water Quality Volume =	0.1717	-	0.1081	=	0.0635	ac-ft.			
above permanent pool									

Basin Volume (above Permanent Pool Elevation)

Contour			Contour Are	ea				Cumulative Volume
Elev.	Proposed	0	Proposed	Average	Depth	Volume	Volume	above Permanent
(ft)	(ft^2)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	Pool (ac-ft)
786	2309		0.0530					
		3381		0.0776	2	6762	0.1552	0.1552
788	4453		0.1022					
		6023		0.1294	2	12045	0.2765	0.4317
790	6819		0.1565					

Determine WQv-Extended Detention Elevation:

		Elev. (ft.)	Cumulative Volume
Required WQv-ED Volun	ne/Elev =	Χ	0.0635
Basin Storage Elevation Range:	High:	788.00	0.1552
(above permanent pool elev)	Low:	786.00	0.0000

Required WQv-ED Volume = 0.0635 ac-ft

Required water quality elevation, X = ft 786.8

Set Water Quality Elevation (WQv-ED)=	787.00	ft
Water Quality Volume Provided=	0.172	ac-ft

Determine the required WQ v-ED orifice:

(Note: ED means extended detention.)

Balance of required WQv = 0.0635 ac-ft.

0.0635 x 43560 ft²/ac / (24 hr x 3600 sec/hr) Average ED release rate =

Average ED release rate = 0.03 cfs

*Size WQv-ED orifice:

*Use the orifice flow equation to calculate the required cross-sectional area and diameter for the WQV-ED orifice:

[Q=ca(sq. rt. (2gh))]

where:

c = 0.61

g = 32.2

Average h = 0.50

sqrt(2gh) =5.675

a= 0.009

sq. ft.

Based upon: [a=Q/c (sq. rt. (2gh)

Resulting diameter of orifice based upon area = D = 0.109

ft. 1.303

Based upon: [D = sq. rt. (4a/3.142

For Design, Use a in. diameter hole.

Orifice centerline elevation = Orifice invert + (Orifice size in feet/2)

Orifice centerline elevation = 786.00 0.13

> Orifice centerline elevation = 786.13 ft.

Step 7: Determine Channel Protection Volume (CPv)

Note: CPv is waive because there are no increase in 1-year peak dischage rate compare to existing condition. In addition to that, WQv provided is already accounted for the 1-year storm.

Step 8: Calculate Q_{p10} (10-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qp10 is less than the existing conditions (Study Point E)

Step 9: Calculate Qf₁₀₀ (100-year Storm) Release Rate and Water Surface Elevation

Note: Refer to HydroCAD output for these analysis. Stage-storage-discharge relationshop for the pond have been established in HydroCAD along with the outlet control. Several design iterations have been performed such that the proposed conditions Qf100 is less than the existing conditions (Study Point E)

Step 10: Calculate Safe Passage of Qf₁₀₀ (100-year Storm) and Set Top of Embankment Elevation

Note: Refer to HydroCAD output for these analysis.

Qf100 (100-year Storm) water elevation = 789'

Top of Embankment is set at elevation = 790'

Freeboard provided = 1 ft

Other Requirements

a) Determine Pond Drain to dewater within 24 hours

Permanent Pool Volume = $\frac{0.1081}{\text{Average release rate}}$ ac-ft. $\frac{0.1081 \times 43560 \text{ ft}^2}{\text{ac}}$ (24 hr x 3600 sec/hr) Average ED release rate = $\frac{0.0081 \times 43560 \text{ ft}^2}{\text{c}}$

*Size Pond Drain orifice:

Qavg =
$$0.05$$
 cfs

Average head (h) = (Permanent Pool Elev - Basin Bottom Elev)/2

Average h = 786.00 - 782.00

2

Average h = 2.00 ft.

*Use the orifice flow equation to calculate the required cross-sectional area and diameter for the Pond Drain Orifice:

[Q=ca(sq. rt. (2gh))] where:
$$c = 0.61$$

$$g = 32.2$$

$$sqrt(2gh) = 11.349$$
 Average h = 2.00
$$a = 0.008$$
 sq. ft. Based upon: [a=Q/c (sq. rt. (2gh))]
Resulting diameter of orifice based upon area = D = 0.100 ft. Based upon: [D = sq. rt. (4a/3.142)]
$$D = 1.202$$
 in.
Orifice centerline elevation = Orifice invert + (Orifice size in feet/2)

Adjustable gate valve shall be provided to pond drain

Orifice centerline elevation =

b) Pond liner is not required since the pond is not located in gravelly sands or fractured bedrock area. However liner will be provided if during construction verify the need of liner.

782.13

ft.

0.13

c) Riprap protection at the oulet has been size to prevent erosion. See attachment E5

Orifice centerline elevation =

d) Length to width ratio = 90/30 = 3:1 (minimum required is 1.5:1)

782.00

- e) Surface area to drainage area ratio = 0.05:2.3 = 1:46 (minimum required is 1:100)
- f) Safety bench is not required since the design side slope is 4:1.
- g Adequate aquatic bench is provided as shown in the site plan.
- h) There is no permanent structure within 25 ft buffer from the maximum water surface elevation of the pond
- i) The pond is easily accessible for maintenance since the open spaces area have slope <15%

Project No: 29011

Calculated By: JC Checked By:

<u>Underground Sand Filter Design -SMW #9 (USF-122)</u> (refer to section 8.3 in SMDM)

Step 1: Compute Water Quality Volume

NYSDEC Required Water Quality Volume (WQv):

Data:

```
P:
          2.8
                   = 1-year Rainfall Precipitation (in.)
          96
 CN:
                   = CN value for developed condition
  Q:
                   = 1-year runoff (in.)
          2.36
   A:
         0.346 = Site Area to Basin (in acres)
  S= 1000/cn -10
  S=
          0.4
 Q = (P-0.2S)^2
      (P+0.8S)
 Q=
          2.36
WQv:
                   = Req'd Water Quality Volume (in ac-ft)
         0.068
                   = (Q)(A)
```

Step 2: Appropriateness Underground Sand Filter for Site

Filter bottom invert = 606

Ground water elevation = Not Available (to be field verify)

Step 3: Compute Available Head and Peak Discharge (Qwq)

Availabel average depth (hf) is set as = 1.75 ft in step 5 below

Compute peak discharge (Q wq)

- (a) Set high-flow pipe invert at elev.= 612 ft
- (b) Compute peak water quality discharge (Qwq):

Compute modified CN for 2.8" rainfall

$$P = 2.8$$
 inch
 $Qa = WQv / Area$
 $Qa = 2.36$ inch

CN =
$$1000 / [10 + 5P + 10Q_a - 10(Q_a^2 + 1.25*Q_a*P)^0.5]$$

CN = 96.0

From TR-55, Exhibit 4-III: $q_u = 400 \text{ csm/in}$

 $Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$

 $Q_{wq} =$ **0.51** cfs

Step 4: Size the Flow Diversion Structure

(a) Size low-flow orifice to pass Water Quality Storm Flow (Qwq)

Assume Head = 1.0 ft (measured from center line of low-flow orifice to inv of high flow)

h = 1

 $Q_{wq} = CA^*(2gh)^0.5$ $A = Q_{wq}/[C^*((2gh)^0.5)]$

A = **0.1058** ft²

 $A = \pi d^{2}/4$ = 3.142*d²/4

d = 0.37 ftd = 4.40 in

5

Low-flow orifice =

inch diameter to pass Water Quality Storm Flow

Low-flow orifice invert at elev.=

610.50 ft

(b) Size high flow pipe to pass larger storm

Pipe Size Selected = 15"

 Q_{25} = 5.5 cfs (from hydroCAD) apacity = 7 cfs

Pipe Capacity = 7 cfs
Set high flow pipe invert at 612.00 ft

Pipe selected can bypass the 25-year flow (even though the requirement is only for 10-year flow)

Step 5: Size Filtration Bed Chamber

$$A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$$

1. Data:

A_f: = Surface area of filter bed (ft²)

100% $WQ_v = 0.068$ ac-ft 100% $WQ_v = 2958.3$ ft³

d_f: 1.5 = Filter bed depth in feet (18" minimum)

k: 3.5 = Coefficient of permeability of filter media (ft/day) - sand coefficient utilized (see manual)

 h_f : 1.75 = Average head on filter (ft) = $h_t/2$

 t_f : 1.67 = Design filter bed drain time (days) (1.67 days is recommended t_f for sand filters)

 $A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$ $A_f = 233.6 ft^2$

Filtration Chamber = 23 x 12 or =

276 ft²

Step 6: Size Sedimentation Chamber

Sedimentation depth = 2.50 ft

Required to store 25% WQv = 739.59 ft^3

Therefore, $As = 25\% WQv / depth \\ As = 295.8 \ ft^2$

Sedimentation Chamber = 23 x 16 or = 368 ft²

Step 7: Compute Minimum Volume, Vmin

 $V_{min} = 0.75 WQv$

 $V_{min} = 2218.8$ ft³

Step 8: Compute volume within practice

```
Volume within filter bed, V_f = A_f(d_f)(n);
                                                                                           0.4 for sand
                                                                             n =
                       165.6 ft<sup>3</sup>
       V_f =
Temporary storage above filter bed, V_{f-temp} = 2 (h_f) (A_f)
   V_{f-temp} =
                          966.0 ft<sup>3</sup>
Compute storage in the Sedimentation Chamber, V<sub>s</sub>
       V_s = \text{(invert of high flow event - bottom of sedimentation tank)} (L*W)]
       V_s = (2*hf + df + 8" of gravel-Sedimentation depth)* (L*W)
                          1165 ft<sup>3</sup>
       V_s =
Total volume provided = Vf + Vf-temp + Vs
                                          2296.9 ft<sup>3</sup>
                                                                                       2218.8 ft<sup>3</sup>
                                                                                                                 OK
```

Step 9: Compute Sedimentation Chamber and Filter Bed Overflow Weir Size

This step is not apply to underground sand filter as the sand filter is burried underground thus no overflow should come out from the sand filter.

However 3ft weir is provided between the sedimentation and filter bed chamber such that the water can flow freely between the chamber.

The high flow pipe at diversion structure will divert the high flow from underground sand filter

Date: 5/27/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC
Checked By:

<u>Underground Sand Filter Design -SMW #12 (USF-104)</u> (refer to section 8.3 in SMDM)

Step 1: Compute Water Quality Volume

NYSDEC Required Water Quality Volume (WQv):

Data:

Step 2: Appropriateness Underground Sand Filter for Site

Filter bottom invert = 496

Ground water elevation = 494 (to be field verify)

Step 3: Compute Available Head and Peak Discharge (Qwq)

Availabel average depth (hf) is set as = 2.50 ft in step 5 below

Compute peak discharge (Q wq)

- (a) Set high-flow pipe invert at elev.= 501.9 ft
- (b) Compute peak water quality discharge (Qwq):

Compute modified CN for 2.8" rainfall
$$P=2.8 \text{ inch}$$

$$Qa=WQv / Area$$

$$Qa=\frac{\textbf{0.78}}{1000} \text{ inch}$$

$$CN=\frac{1000}{1000} / [10+5P+10Q_a-10(Q_a^2+1.25^*Q_a^*P)^0.5]$$

$$CN=\frac{\textbf{74.0}}{1000}$$

From TR-55, Table 4-1: Ia = 1.704 Ia / P = 0.609

From TR-55, Exhibit 4-III: $q_u = 280 \text{ csm/in}$

 $Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$

 $Q_{wq} = 1.06$ cfs

Step 4: Size the Flow Diversion Structure

(a) Size low-flow orifice to pass Water Quality Storm Flow (Q wa)

Assume Head = 1.5 ft (measured from center line of low-flow orifice to inv of high flow)

$$h = 1.5$$

$$Q_{wq} = CA^*(2gh)^0.5$$

$$A = Q_{wq}/[C^* ((2gh)^0.5)]$$

$$A =$$
 0.1803 ft²

$$A = \pi d^2/4$$

$$= 3.142*d^2/4$$

$$d = 0.48 \text{ ft}$$

Low-flow orifice = 6 inch diameter to pass Water Quality Storm Flow

Low-flow orifice invert at elev.=

(b) Size high flow pipe to pass larger storm

$$Q_{25}$$
 = 3.8 cfs (from hydroCAD)

Set high flow pipe invert at 501.90 ft

Pipe selected can bypass the 25-year flow (even though the requirement is only for 10-year flow)

500.40 ft

Step 5: Size Filtration Bed Chamber

$$A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$$

1. Data:

100%
$$WQ_v = 0.203$$
 ac-ft
100% $WQ_v = 8821.9$ ft³

k: 3.5 = Coefficient of permeability of filter media (ft/day) - sand coefficient utilized (see manual)

 h_f : 2.50 = Average head on filter (ft) = $h_t/2$

 t_f : 1.67 = Design filter bed drain time (days) (1.67 days is recommended t_f for sand filters)

$$A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$$

$$A_f = 566.0$$
 ft²

Filtration Chamber = 25 x 24 or = 600 ft^2

Step 6: Size Sedimentation Chamber

Sedimentation depth = 2.50 ft

Required to store 25% WQv = 2205.48 ft^3

Therefore, As = 25%WQv / depth

 $As = 882.2 \text{ ft}^2$

Sedimentation Chamber = 25 x 36 or = 900 ft²

Step 7: Compute Minimum Volume, Vmin

$$V_{min} = 0.75 WQv$$

$$V_{min} = 6616.4$$
 ft³

Step 8: Compute volume within practice

```
Volume within filter bed, V_f = A_f(d_f)(n);
                                                                             n =
                                                                                            0.4 for sand
                          360.0 ft<sup>3</sup>
Temporary storage above filter bed, V_{f-temp} = 2 (h_f) (A_f)
                         3000.0 ft<sup>3</sup>
   V_{f-temp} =
Compute storage in the Sedimentation Chamber, V<sub>s</sub>
       V_s = (invert of high flow event - bottom of sedimentation tank) (L*W)]
       V_s = (2*hf + df + 8" of gravel-Sedimentation depth)* (L*W)
                           4200 ft<sup>3</sup>
       V_s =
Total volume provided = Vf + Vf-temp + Vs
                                           7560.0 ft<sup>3</sup>
                                                                                        6616.4 ft<sup>3</sup>
                                                                                                                  OK
```

Step 9: Compute Sedimentation Chamber and Filter Bed Overflow Weir Size

This step is not apply to underground sand filter as the sand filter is burried underground thus no overflow should come out from the sand filter.

However 3ft weir is provided between the sedimentation and filter bed chamber such that the water can flow freely between the chamber.

The high flow pipe at diversion structure will divert the high flow from underground sand filter

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606 Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

<u>Underground Sand Filter Design -SMW #13 (USF-984)</u> (refer to section 8.3 in SMDM)

Step 1: Compute Water Quality Volume

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 2.8 = 1-year Rainfall Precipitation (in.)

CN: 81 = CN value for developed condition

Q: 1.16 = 1-year runoff (in.)

A: 2.9 = Site Area to Basin (in acres)

$$S= 1000/\text{cn} -10$$

$$S= 2.3$$

$$Q= \frac{(P-0.2S)^2}{(P+0.8S)}$$

$$Q= 1.16$$

WQv: 0.281 = Req'd Water Quality Volume (in ac-ft) = $\frac{(Q)(A)}{12}$

Step 2: Appropriateness Underground Sand Filter for Site

Filter bottom invert = 771'

Ground water elevation = 769' (to be field verify)

Step 3: Compute Available Head and Peak Discharge (Qwq)

Availabel average depth (hf) is set as = 3.50 ft in step 5 below

Compute peak discharge (Q $_{\rm wq}$)

- (a) Set high-flow pipe invert at elev.= 782.5 ft
- (b) Compute peak water quality discharge (Qwq):

CN =
$$1000 / [10 + 5P + 10Q_a - 10(Q_a^2 + 1.25*Q_a*P)^0.5]$$

CN = 81.0

From TR-55, Table 4-1: Ia = 0.469 Ia / P = 0.168

From TR-55, Exhibit 4-III: $q_u = 460 \text{ csm/in}$

 $Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$

 $Q_{wq} =$ 2.42 cfs

Step 4: Size the Flow Diversion Structure

(a) Size low-flow orifice to pass Water Quality Storm Flow (Qwq)

```
Assume Head = 1.5 ft (measured from center line of low-flow orifice to inv of high flow)
```

$$Q_{wq} = CA^*(2gh)^0.5$$

 $A = Q_{wq}/[C^*((2gh)^0.5)]$

$$A = \pi d^{2}/4$$
= 3.142*d²/4

$$d = 0.72 \text{ ft}$$

 $d = 8.68 \text{ in}$

Low-flow orifice = 10

inch diameter to pass Water Quality Storm Flow

Low-flow orifice invert at elev.=

781.00 ft

(b) Size high flow pipe to pass larger storm

$$Q_{25} = 14.92$$
 (from hydroCAD)

Pipe selected can bypass the 25-year flow (even though the requirement is only for 10-year flow)

Step 5: Size Filtration Bed Chamber

$$A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$$

1. Data:

 A_f : = Surface area of filter bed (ft^2)

100%
$$WQ_v = 0.281$$
 ac-ft
100% $WQ_v = 12229.6$ ft³

$$h_f$$
: 3.50 = Average head on filter (ft) = $h_t/2$

$$A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$$

$$A_f = 627.7$$
 ft²

Filtration Chamber = 32 x 21 or =

672 ft²

Step 6: Size Sedimentation Chamber

Sedimentation depth = 4.00 ft

Required to store 25% WQv = 3057.41 ft³

Therefore, As = 25%WQv / depth

As = 764.4 ft^2

Sedimentation Chamber = 32 x 25 or = 800 ft²

Step 7: Compute Minimum Volume, Vmin

$$V_{min} = 0.75 WQv$$

$$V_{min} = 9172.2$$
 ft³

Step 8: Compute volume within practice

```
Volume within filter bed, V_f = A_f(d_f)(n); n = 0.4 for sand V_f = 403.2 ft<sup>3</sup>

Temporary storage above filter bed, V_{f\text{-temp}} = 2 (h_f) (A_f)

V_{f\text{-temp}} = 4704.0 ft<sup>3</sup>

Compute storage in the Sedimentation Chamber, V_s

V_s = (\text{invert of high flow event - bottom of sedimentation tank }) (L*W)]

V_s = (2^*\text{hf} + \text{df} + 8^* \text{ of gravel-Sedimentation depth})^* (L*W)

V_s = 4133 ft<sup>3</sup>

Total volume provided = Vf + Vf-temp + Vs

= 9240.5 ft<sup>3</sup> > 9172.2 ft<sup>3</sup> OK
```

Step 9: Compute Sedimentation Chamber and Filter Bed Overflow Weir Size

This step is not apply to underground sand filter as the sand filter is burried underground thus no overflow should come out from the sand filter.

However 3ft weir is provided between the sedimentation and filter bed chamber such that the water can flow freely between the chamber.

The high flow pipe at diversion structure will divert the high flow from underground sand filter

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606 Date: 5/27/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

<u>Underground Sand Filter Design -SMW #14 (USF-991)</u> (refer to section 8.3 in SMDM)

Step 1: Compute Water Quality Volume

NYSDEC Required Water Quality Volume (WQv):

Data:

```
P٠
           2.8
                   = 1-year Rainfall Precipitation (in.)
 CN:
           73
                   = CN value for developed condition
   Q:
          0.74
                   = 1-year runoff (in.)
   A:
           9.2
                   = Site Area to Basin (in acres)
  S= 1000/cn -10
          3.7
  S=
 Q = (P-0.2S)^2
      (P+0.8S)
 Q=
          0.74
WQv:
         0.565
                   = Req'd Water Quality Volume (in ac-ft)
                   = (Q)(A)
                       12
```

Step 2: Appropriateness Underground Sand Filter for Site

Filter bottom invert = 684'

Ground water elevation = 682' (to be field verify)

Step 3: Compute Available Head and Peak Discharge (Qwq)

Availabel average depth (hf) is set as = 4.50 ft in step 5 below

Compute peak discharge (Q wq)

- (a) Set high-flow pipe invert at elev.= 695.5 ft
- (b) Compute peak water quality discharge (Qwq):

$$P = 2.8 \text{ inch}$$

$$Qa = WQv / Area$$

$$Qa = \frac{0.74}{1000} \text{ inch}$$

$$CN = 1000 / [10 + 5P + 10Q_a - 10(Q_a^2 + 1.25*Q_a*P)^0.5]$$

$$CN = \frac{73.0}{1000}$$
 From TR-55, Table 4-1:
$$Ia = 0.667 \qquad Ia / P = 0.238$$

From TR-55, Exhibit 4-III: $q_u = 360 \text{ csm/in}$

$$Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$$

 $Q_{wq} =$ 3.81 cfs

Step 4: Size the Flow Diversion Structure

(a) Size low-flow orifice to pass Water Quality Storm Flow (Q_{MQ})

```
Assume Head = 1.5 ft (measured from center line of low-flow orifice to inv of high flow)
```

$$Q_{wq} = CA*(2gh)^0.5$$

 $A = Q_{wq}/[C^* ((2gh)^0.5)]$
 $A =$
0.6468 ft²

$$A = \pi d^{2}/4$$
= 3.142*d²/4

d = 0.91 ftd = 10.89 in

Low-flow orifice =

12 inch diameter to pass Water Quality Storm Flow

Low-flow orifice invert at elev.=

694.00 ft

(b) Size high flow pipe to pass larger storm

 $\label{eq:Q25} Q_{25} = 27.8 \text{ cfs} \qquad \text{(from hydroCAD)}$ Pipe Capacity = 31 $\qquad \text{cfs}$

Set high flow pipe invert at 695.50 ft

Pipe selected can bypass the 25-year flow (even though the requirement is only for 10-year flow)

Step 5: Size Filtration Bed Chamber

$$A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$$

1. Data:

A_f: = Surface area of filter bed (ft²)

$$100\% \text{ WQ}_{\text{v}} = 0.565 \qquad \text{ac-ft}$$

 $100\% \text{ WQ}_{\text{v}} = 24615.3 \qquad \text{ft}^3$

d_f: 1.5 = Filter bed depth in feet (18" minimum)

k: 3.5 = Coefficient of permeability of filter media (ft/day) - sand coefficient utilized (see manual)

 h_f : 4.50 = Average head on filter (ft) = $h_t/2$

 t_i : 1.67 = Design filter bed drain time (days) (1.67 days is recommended t for sand filters)

 $A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$ $A_f = \frac{1052.8}{} ft^2$

Filtration Chamber = 36 x 32 or =

1152 ft²

Step 6: Size Sedimentation Chamber

Sedimentation depth = 5.00 ft

Required to store 25% WQv = 6153.82 ft^3

Therefore, $As = 25\% WQv / depth \\ As = 1230.8 \text{ ft}^2$

Sedimentation Chamber = 36 x 35 or = 1260 ft²

Step 7: Compute Minimum Volume, Vmin

ft³

 $V_{min} = 0.75 \text{ WQv}$ $V_{min} = 18461.5$

Step 8: Compute volume within practice

```
Volume within filter bed, V_f = A_f(d_f)(n); n = 0.4 for sand V_f = 691.2 ft<sup>3</sup>

Temporary storage above filter bed, V_{f\text{-temp}} = 2 (h_f) (A_f)

V_{f\text{-temp}} = 10368.0 ft<sup>3</sup>

Compute storage in the Sedimentation Chamber, V_s

V_s = (\text{invert of high flow event - bottom of sedimentation tank }) (L*W)]

V_s = (2*\text{hf} + \text{df} + 8" \text{ of gravel-Sedimentation depth})* (L*W)

V_s = 7770 ft<sup>3</sup>

Total volume provided = Vf + Vf-temp + Vs

V_s = 18829.2 ft<sup>3</sup> > 18461.5 ft<sup>3</sup> Oh
```

Step 9: Compute Sedimentation Chamber and Filter Bed Overflow Weir Size

This step is not apply to underground sand filter as the sand filter is burried underground thus no overflow should come out from the sand filter.

However 3ft weir is provided between the sedimentation and filter bed chamber such that the water can flow freely between the chamber.

The high flow pipe at diversion structure will divert the high flow from underground sand filter

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606 Date: 5/27/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

<u>Underground Sand Filter Design -SMW #15 (USF-652)</u> (refer to section 8.3 in SMDM)

Step 1: Compute Water Quality Volume

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 2.8 = 1-year Rainfall Precipitation (in.)
CN: 60 = CN value for developed condition
Q: 0.26 = 1-year runoff (in.)

A: 2.25 = Site Area to Basin (in acres)

S= 1000/cn -10 S= 6.7

 $Q = \frac{(P-0.2S)^2}{(P+0.8S)}$ Q = 0.26

WQv: $\underline{0.050}$ = Req'd Water Quality Volume (in ac-ft) = $\underline{(Q)(A)}$

12

Step 2: Appropriateness Underground Sand Filter for Site

Filter bottom invert = 497'

Ground water elevation = 492 (to be field verify)

Step 3: Compute Available Head and Peak Discharge (Qwq)

Availabel average depth (hf) is set as = 2.00 ft in step 5 below

Compute peak discharge (Q wq)

(a) Set high-flow pipe invert at elev.= 504.5 ft

(b) Compute peak water quality discharge (Qwq):

P = 2.8 inch Qa = WQv / AreaQa = 0.26 inch

 $CN = 1000 / [10 + 5P + 10Q_a - 10(Q_a^2 + 1.25*Q_a*P)^0.5]$ $CN = \frac{60.0}{100}$

From TR-55, Table 4-1: la = 1.333 la / P = 0.476

From TR-55, Exhibit 4-III: $q_u = 300 \text{ csm/in}$

 $Q_{wq} = (q_u)(Site Area, ac/ 640 ac/ sq. mi)(Q_a)$

 $Q_{wq} = 0.28$ cfs

Step 4: Size the Flow Diversion Structure

(a) Size low-flow orifice to pass Water Quality Storm Flow (Qwq)

```
Assume Head = 1.5 ft (measured from center line of low-flow orifice to inv of high flow)
```

$$h = 1.5$$

$$Q_{wq} = CA*(2gh)^0.5$$

 $A = Q_{wq}/[C^* ((2gh)^0.5)]$
 $A =$
0.0473 ft²

$$A = \pi d^2/4$$

$$= 3.142*d^2/4$$

$$d = 0.25 \text{ ft}$$

 $d = 2.94 \text{ in}$

Low-flow orifice =

inch diameter to pass Water Quality Storm Flow

Low-flow orifice invert at elev.=

503.00 ft

(b) Size high flow pipe to pass larger storm

$$Q_{25} = 5.18 \text{ cfs}$$

$$Q_{25} = 5.18 \text{ cfs}$$
 (from hydroCAD)

cfs ft

Pipe selected can bypass the 25-year flow (even though the requirement is only for 10-year flow)

Step 5: Size Filtration Bed Chamber

$$A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$$

1. Data:

 A_f : = Surface area of filter bed (ft²)

100%
$$WQ_v = 0.050$$
 ac-ft
100% $WQ_v = 2160.1$ ft³

= Coefficient of permeability of filter media (ft/day) - sand coefficient utilized (see manual) 3.5

240 ft²

= Average head on filter (ft) = h_t/2 h_f: 2.00

= Design filter bed drain time (days) (1.67 days is recommended \$ for sand filters) 1.67

$$\begin{aligned} A_f &= (WQ_v)(d_f)/[(k)(h_f + d_f)(t_f)] \\ A_f &= & \underline{158.4} & \text{ft}^2 \end{aligned}$$

<u>158.4</u>

Filtration Chamber = 20 x 10 or = 200

Step 6: Size Sedimentation Chamber

Sedimentation depth = 2.50 ft

540.04 ft³ Required to store 25% WQv =

As = 25%WQv / depth Therefore, 216.0 ft² As =

Sedimentation Chamber = 20x12 or =

Step 7: Compute Minimum Volume, Vmin

$$V_{min} = 0.75 WQv$$

$$V_{min} = 1620.1$$
 ft³

Step 8: Compute volume within practice

```
Volume within filter bed, V_f = A_f(d_f)(n);
                                                                                   0.4 for sand
                                                                      n =
              120.0 ft<sup>3</sup>
      V_f =
Temporary storage above filter bed, V_{f-temp} = 2 (h_f) (A_f)
  V_{f-temp} =
                     800.0 ft<sup>3</sup>
Compute storage in the Sedimentation Chamber, V<sub>s</sub>
      V_s = \text{(invert of high flow event - bottom of sedimentation tank)} (L*W)]
      V_s = (2*hf + df + 8" of gravel-Sedimentation depth)* (L*W)
                         880 ft<sup>3</sup>
      V_s =
Total volume provided = Vf + Vf-temp + Vs
                                                    > 1620.1 ft<sup>3</sup>
                                      1800.0 ft<sup>3</sup>
                                                                                                      OK
                           =
```

Step 9: Compute Sedimentation Chamber and Filter Bed Overflow Weir Size

This step is not apply to underground sand filter as the sand filter is burried underground thus no overflow should come out from the sand filter.

However 3ft weir is provided between the sedimentation and filter bed chamber such that the water can flow freely between the chamber.

The high flow pipe at diversion structure will divert the high flow from underground sand filter

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606 Date: 5/27/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

<u>Underground Sand Filter Design -SMW #16 (USF-605)</u> (refer to section 8.3 in SMDM)

Step 1: Compute Water Quality Volume

NYSDEC Required Water Quality Volume (WQv):

Data:

```
P٠
           2.8
                   = 1-year Rainfall Precipitation (in.)
 CN:
           58
                   = CN value for developed condition
   Q:
          0.21
                   = 1-year runoff (in.)
   A:
           5.3
                   = Site Area to Basin (in acres)
  S= 1000/cn -10
  S=
          7.2
 Q = (P-0.2S)^2
      (P+0.8S)
 Q=
          0.21
         0.094
WQv:
                   = Req'd Water Quality Volume (in ac-ft)
                   = (Q)(A)
                       12
```

Step 2: Appropriateness Underground Sand Filter for Site

Filter bottom invert = 509'

Ground water elevation = 492 (to be field verify)

Step 3: Compute Available Head and Peak Discharge (Qwq)

Availabel average depth (hf) is set as = 2.00 ft in step 5 below

Compute peak discharge (Q wq)

- (a) Set high-flow pipe invert at elev.= 517.2
- (b) Compute peak water quality discharge (Qwq):

$$P = 2.8 \text{ inch}$$

$$Qa = WQv / Area$$

$$Qa = 0.21 \text{ inch}$$

$$CN = 1000 / [10 + 5P + 10Q_a - 10(Q_a^2 + 1.25*Q_a*P)^0.5]$$

$$CN = 58.0$$

From TR-55, Exhibit 4-III: $q_{ij} = 290 \text{ csm/in}$

 Q_{wq} = (q_u) (Site Area, ac/ 640 ac/ sq. mi)(Q_a) Q_{wq} = **0.51** cfs

Step 4: Size the Flow Diversion Structure

(a) Size low-flow orifice to pass Water Quality Storm Flow (Qwq)

```
\label{eq:Assume Head} Assume \ \mbox{Head} = 1.5 \ \mbox{ft} \ \mbox{(measured from center line of low-flow orifice to inv of high flow)}
```

$$Q_{wq} = CA*(2gh)^0.5$$

 $A = Q_{wq}/[C*((2gh)^0.5)]$
 $A =$ **0.0866** ft²

$$A = \pi d^2/4$$

$$= 3.142*d^2/4$$

$$d = 0.33 \text{ ft}$$

 $d = 3.98 \text{ in}$

Low-flow orifice = 5

inch diameter to pass Water Quality Storm Flow

Low-flow orifice invert at elev.=

515.70 ft

(b) Size high flow pipe to pass larger storm

$$Q_{25}$$
 = 8.54 cfs (from hydroCAD)

Pipe selected can bypass the 25-year flow (even though the requirement is only for 10-year flow)

Step 5: Size Filtration Bed Chamber

$$A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$$

1. Data:

A_f: = Surface area of filter bed (ft²)

100%
$$WQ_v = 0.094$$
 ac-ft
100% $WQ_v = 4090.8$ ft³

$$h_f$$
: 2.00 = Average head on filter (ft) = $h_t/2$

$$A_f = (WQ_v)(d_f)/[(k)(h_f+d_f)(t_f)]$$

$$A_f = 299.9 ft^2$$

Filtration Chamber = $25x 14 \text{ or} = 350 \text{ ft}^2$

Step 6: Size Sedimentation Chamber

Sedimentation depth = 2.50 ft

Required to store 25% WQv = 1022.70 ft³

Therefore, $As = 25\% WQv / depth \\ As = 409.1 ft^2$

Sedimentation Chamber = 25 x 17 or = 425 ft^2

Step 7: Compute Minimum Volume, Vmin

$$V_{min} = 0.75 WQv$$

$$V_{min} = 3068.1$$
 ft³

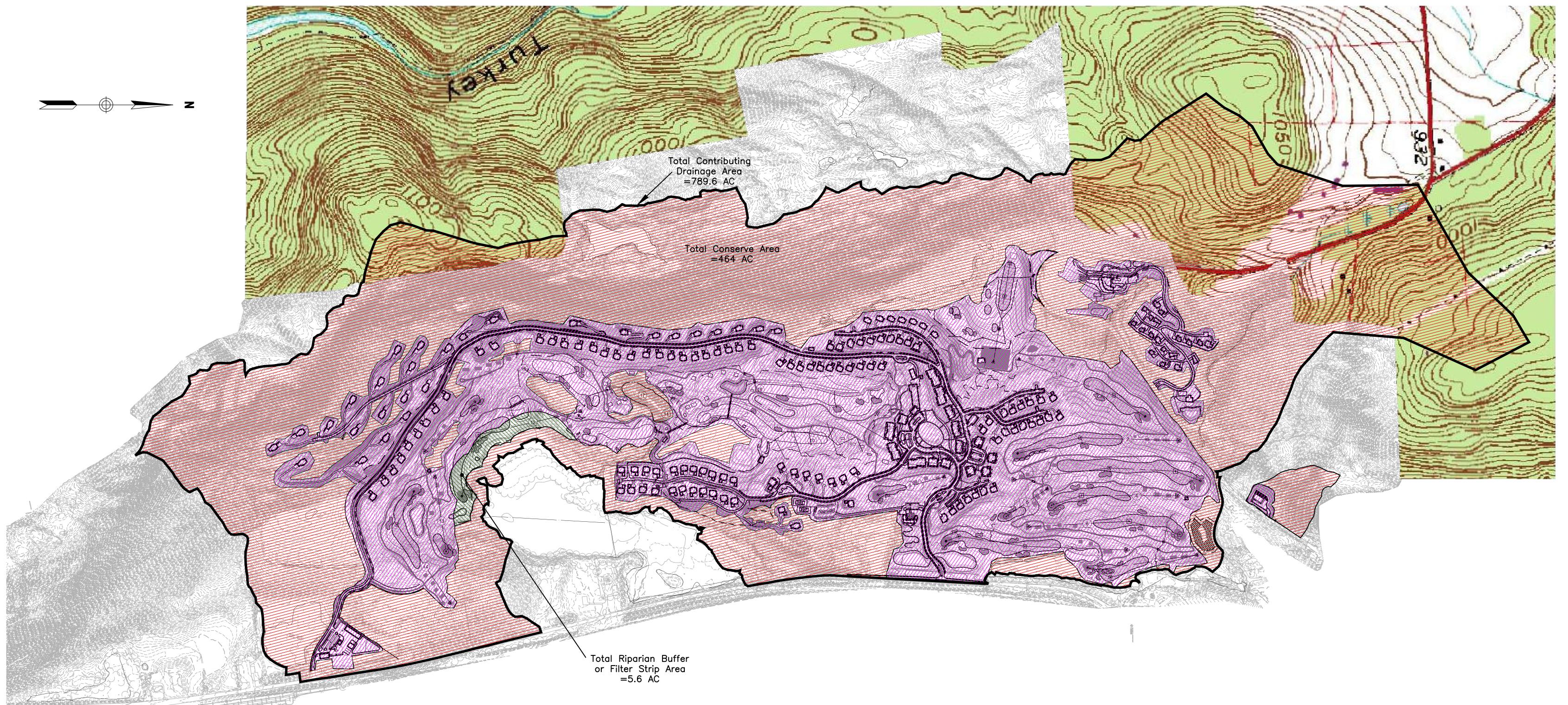
Step 8: Compute volume within practice

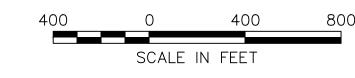
```
Volume within filter bed, V_f = A_f(d_f)(n);
                                                                                           0.4 for sand
                                                                            n =
                       210.0 ft<sup>3</sup>
       V_f =
Temporary storage above filter bed, V_{f-temp} = 2 (h_f) (A_f)
   V_{f-temp} =
                        1400.0 ft<sup>3</sup>
Compute storage in the Sedimentation Chamber, V<sub>s</sub>
       V_s = \text{(invert of high flow event - bottom of sedimentation tank)} (L*W)]
       V_s = (2*hf + df + 8" of gravel-Sedimentation depth)* (L*W)
                           1558 ft<sup>3</sup>
       V_s =
Total volume provided = Vf + Vf-temp + Vs
                                          3168.3 ft<sup>3</sup>
                                                                                      3068.1 ft<sup>3</sup>
                                                                                                                OK
                               =
```

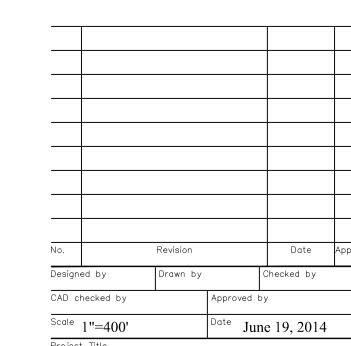
Step 9: Compute Sedimentation Chamber and Filter Bed Overflow Weir Size

This step is not apply to underground sand filter as the sand filter is burried underground thus no overflow should come out from the sand filter.

However 3ft weir is provided between the sedimentation and filter bed chamber such that the water can flow freely between the chamber.


The high flow pipe at diversion structure will divert the high flow from underground sand filter




Engineering, Surveying & Landscape Architecture, P.C.

Planning
Transportation
Land Development
Environmental Services

50 Main Street - Suite 360 White Plains, NY 10606 914.761.3582 • FAX 914.761.3582

Scale 1"=400'
Project Title
Silo Ridge Resort
Community

4651 Route 22 Amenia, New York Permitting

Not Approved for Construction

Proposed Conditions Water Quality Map

Fig. E3

Sheet of 1 1

Project Number 29011.00

VHB Engineering, Surveying and Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York 10606

Date: 7/2/2014 **Project: Silo Ridge** Project No: 29011

Calculated By: JC Checked By:

Water Quality Volume & Runoff Reduction Volume Analysis

1) Required Water Quality Volume Calculations

(#28 in NOI)

NYSDEC Required Water Quality Volume (WQv):

```
Data:
```

```
P:
       2.8
               = 1-year Rainfall Precipitation (in.)
CN:
       67.7
               = CN value for developed condition
       0.52
               = 1-year runoff (in.)
 Q:
 A:
      789.6 = Contributing Drainage Area (in acres)
S= 1000/cn -10
S=
       4.8
Q = (P-0.2S)^2
Q=
       0.52
      33.926 = Reg'd Water Quality Volume (in ac-ft)
```

WQv:
$$33.926$$
 = Req'd Water Quality Volume (in ac-ft)
= $(Q)(A)$
12

Required WQv = 33.926 Ac-ft

2) Runoff Reduction Volume- Conservation area

(#30 in NOI)

NYSDEC Required Water Quality Volume (WQv):

Data:

P: 2.8 = 1-year Rainfall Precipitation (in.)

CN: 70.2 = CN value for Conservation Area

Q: 0.61 = 1-year runoff (in.)

A: 464 = Contributing Drainage Area (in acres)

$$S= 1000/\text{cn} -10$$

$$S= 4.3$$

$$Q= \frac{(P-0.2S)^2}{(P+0.8S)}$$

$$Q= 0.61$$

WQv: 23.686 = Req'd Water Quality Volume (in ac-ft) = $\frac{(Q)(A)}{12}$

2A) Runoff Reduction Volume- Buffer / Filter Strip Area (#30 in NOI)

NYSDEC Required Water Quality Volume (WQv):

Data: P: 2.8 = 1-year Rainfall Precipitation (in.) 74 = CN value for Buffer/ Filter Strip Area CN: Q: 0.78 = 1-year runoff (in.) = Contributing Drainage Area (in acres) A: 5.66 S= 1000/cn -10 S= 3.5 $Q = (P-0.2S)^2$ (P+0.8S) Q= 0.78 WQv: **0.370** = Req'd Water Quality Volume (in ac-ft) = (Q)(A)12

3) Total Runoff Reduction Volume Provided (#30 in NOI)

Note: RRv provided by infiltration basins which are constructed during golf phase are not being considered for built conditions to be conservative.

4) Minimum Required Runoff Reduction Volume Based on HSG (#32 in NOI)

RRv (min) =
$$(P * 0.95 * Ai) / 12$$

Where Ai = S * Aic
Aic = Total area of new Impervious
Aic = 50.2 Ac
S = 0.55 (to be conservative assume all soil A)
RRv (min) = $(P * 0.95 * Ai) / 12$
= $(2.8 \times 0.95 \times 0.55 \times 50.2)/12$
= 6.12 Ac-ft

Ac-ft

6.12

RRv (min) =

5) Water Quality Volume Provided by Standard Stormwater Management Practise During Full-Built Condition (#33a in NOI)

Stormwater Management Practise	Water Quality Volume Provided (ac-ft)
Wet Extended Pond	14.614
Underground Sand Filter	1.260
Total WQv Provided	15.874

Note: WQv provided by infiltration basins which are constructed during golf phase are not being considered for for built conditions to be conservative.

6) Total Runoff Reduction Volume and Water Quality Volume Provided (#34 in NOI)

Total RRv & WQv Provided = 24.056 + 15.874 **Total RRv & WQv Provided = 39.930 Ac-ft**

7) Total RRv & WQv Provided Vs. Required WQv (#35 in NOI)

Total RRv & WQv Provided = 39.930 Ac-ft Required WQv = 33.926 Ac-ft

Total RRv & WQv Provided > Required WQv ok

VHB Engineering, Surveying Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York Project: 5/7/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR OVERLOOK AREA (SB #1)

Drainage Area = 1 acres
Riser Crest Elevation = 809

Peak discharge for construction condition (Rational Method):

$$Q_{p(10)} = CIA$$

= 0.9 * 5 in * 1 ac
= 4.5 cfs
 $Q_{p(10)} = 4.50$ cfs

A. BASIN SIZE DESIGN REQUIREMENTS

1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)

= 134 cu.yds/ac x Drainage Area (acres)

= 134 cu.yds.

= 0.083 ac-ft

- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.

= 50% of 134

67 cu.yds.

= 0.042 ac-ft

b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

Chart: Sediment Basin Design Elevation VS Volume

								1	2	1-2=3
Contour		Conto	ır Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
806	984		0.0226							
		1367		0.0314	2	2733	0.0627	0.0627	0.0831	-0.0203
808	1749		0.0402							
		2182		0.0501	2	4364	0.1002	0.1629	0.0831	0.0799
810	2615		0.0600							

Interpolated Elevation for scheduled time to clean out = 807.6

Elevation corresponding to scheduled time to clean out = 808.00 ft.

c. Distance below top of riser, h

 $\begin{array}{ll} h = Riser\ Crest\ Elevation\ -\ Elevation\ at\ 50\%\ of\ basin\ storage\ volume \\ h = 809.0 \quad - 808.00 \end{array}$

h = 1 ft.

3) Minimum Basin Surface Area,

$$As = 0.01 \ x \ Q_{p(10)} \quad \underline{or} \quad 0.015 \ x \ DA$$

 $As = 0.01 \times Q_{p(10)}$

 $As = 0.01 \times 4.50$

As = 0.045 ac

 $\underline{\text{or}}$ As = 0.015 x DA

As = 0.015 x 1

As = 0.015 ac

Use As =
$$0.045$$
 ac which is greater than As = 0.015 ac

B. DESIGN OF SPILLWAY AND ELEVATIONS

Bottom of Basin = 806.0

Runoff:

4) $Q_{p(10)} = 4.50$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = $0.2 \times DA$ = 0.20 cfs

6) H = 809.0 - 805.0 = 4.0 ft.

Barrel Length, L 50 ft

7) Barrel Diameter, Dp = 15 inches

Q = 6.96 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = 1.14 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 7.93 cfs

8) Riser Diameter = 15 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 809.0 - 806.0 = 3.0 ft.

Required, h = 0.6 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

9) Trash Rack Diameter = 21" (Fig. 5A.29 (2))

H = 7'' (Fig. 5A.29(2))

Design High Water Elevation = Riser Crest Elevation + h

= 809.0 + 1.00

= 810.0

Top of Dam Elevation = 811.0 (1 ft freeboard)

C. ANTI-SEEP COLLAR/ SEEPAGE DIAPHRAGM DESIGN

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 810.0 Distance from upstream invert to highest water level, y = 3.0

Slope upstream embankment, Z = 2 :1 pipe slope = 0.020

Length of pipe in saturated zone, $L_s = \frac{20}{100}$ ft.

Required collar number = 2
Anti-Seep collar size = 3.0
Outlet pipe size = 1.25
Projection = 0.9
ft.
Ollar spacing is between = 4.5

Required collar number = 2
1.0

(Fig. 5A.31 - Anti-Seep Collar Design Charts)

(Fig. 5A.31 - Anti-Seep Collar Design Charts)

(Fig. 5A.31 - Anti-Seep Collar Design Charts)

ft.

2.00%

Collar spacing is between = 4.5 ft. to 12.3 Provided collar spacing = 10.0 ft.

D. DEWATERING ORIFICE SIZING

13) Ao = $\frac{\text{As x } (2 \text{ x h})^{0.5}}{122,568}$ As = 0.045 ac h = 1 ft.

 $\frac{3.14 \text{ d}_0^2}{4}$ = 0.023 ft²

 $d_0 = 0.170$ ft. = 2.04 inches

Provide 3-inch diameter hole at elevation 808.00 for dewatering orifice

VHB Engineering, Surveying Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York Project: 6/6/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA D102 (SB #2)

Drainage Area = 0.35 acres
Riser Crest Elevation = 614.5

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 1.66 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - 46.9 cu.yds.
 - = 0.029 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 46.9
 - = 23.45 cu.yds.
 - = 0.015 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

Chart: Sediment Basin Design Elevation VS Volume

								1	2	1-2=3
Contour		Conto	ır Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
612	231		0.0053							
		390		0.0089	2	779	0.0179	0.0179	0.0291	-0.0112
614	548		0.0126							
		758		0.0174	2	1515	0.0348	0.0527	0.0291	0.0236
616	967		0.0222							

Volume/elevation corresponding to scheduled time to clean out = $\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

Interpolated Elevation for scheduled time to clean out = 613.6

Elevation corresponding to scheduled time to clean out = 613.60 ft.

c. Distance below top of riser, h

h = Riser Crest Elevation - Elevation at 50% of basin storage volume

h = 614.5 - 613.60

h = 0.9 ft.

3) Minimum Basin Surface Area,

$$As = 0.01 \ x \ Q_{p(10)} \quad \underline{or} \quad 0.015 \ x \ DA$$

 $As = 0.01 \times Q_{p(10)}$

 $As = 0.01 \times 1.66$

As = 0.017 ac

 $\underline{\text{or}}$ As = 0.015 x DA

 $As = 0.015 \quad x \quad 0.35$

As = 0.005 ac

Use As = $\frac{0.017}{2}$ ac which is greater than As = 0.005 ac

B. DESIGN OF SPILLWAY AND ELEVATIONS

Bottom of Basin = 612.0

Runoff:

4) $Q_{p(10)} = 1.66$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = $0.2 \times DA$ = 0.07 cfs

6) H = 614.5 - 610.0 = 4.5 ft.

Barrel Length, L 100 ft.

7) Barrel Diameter, Dp = 12 inches

Q = 4.00 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025)

Correction Factor = 0.86 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 3.44 cfs

8) Riser Diameter = 12 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 614.5 - 612.0

= 2.5 ft.

Required, h = 0.4 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

9) Trash Rack Diameter = 18" (Fig. 5A.29 (2))

H = 6'' (Fig. 5A.29(2))

Design High Water Elevation = Riser Crest Elevation + h

= 614.5 + 1.00

= 615.5

Top of Dam Elevation = 616.5 (1 ft freeboard)

C. ANTI-SEEP COLLAR/ SEEPAGE DIAPHRAGM DESIGN

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 615.5

Distance from upstream invert to highest water level, $y = \frac{2.5}{100}$ ft.

Slope upstream embankment, Z = 2:

pipe slope = 0.020 2.00%

Length of pipe in saturated zone, $L_s = \frac{16}{100}$ ft.

Required collar number = 2 (Fig. 5A.31 - Anti-Seep Collar Design Charts)

Anti-Seep collar size = 2.3 ft.
Outlet pipe size = 1 ft.

Projection = 0.6 ft.

Collar spacing is between = 3.0 ft. to 8.8 ft.

Provided collar spacing = 8.0 ft.

D. DEWATERING ORIFICE SIZING

13) Ao =
$$\frac{\text{As x } (2 \text{ x h})^{0.5}}{122,568}$$
 As = 0.017 ac h = 0.9 ft.

$$\frac{3.14 \, d_0^2}{1.0000} = 0.008 \, \text{ft}^2$$

$$d_0 = 0.100 \text{ ft.}$$

= 1.20 inches

Provide 3-inch diameter hole at elevation 613.60 for dewatering orifice

VHB Engineering, Surveying Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York Project: 1/16/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA A101 (SB #3)

Drainage Area = 12.36 acres

Riser Crest Elevation = Emergency Spillway Elevation - Req'd 1-foot of freeboard

= 529.00 - 1

= 528.00

Peak discharge for construction condition (from HydroCAD analysis) :

Q_{p(10)}: 18.54 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)

= 134 cu.yds/ac x Drainage Area (acres) = 1656.2 cu.yds.

= 1.027 ac-ft

- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.

= 50% of 1656.2

= 828.12 cu.yds.

= 0.513 ac-ft

b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

Chart: Sediment Basin Design Elevation VS Volume

								1	2	1-2=3
Contour		Conto	ır Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
524	6111		0.1403							
		6745		0.1548	2	13490	0.3097	0.3097	1.0266	-0.7169
526	7379		0.1694							
		8063		0.1851	2	16126	0.3702	0.6799	1.0266	-0.3467
528	8747		0.2008							
		9482		0.2177	2	18963	0.4353	1.1152	1.0266	0.0886
530	10216		0.2345							

Volume/elevation corresponding to scheduled time to clean out = $\frac{\text{Cumulative}}{\text{Volume (ac-ft)}}$ Elevation Range: High: Low: $\frac{\text{Cumulative}}{\text{528.00}}$ 0.513

Interpolated Elevation for scheduled time to clean out = <u>527.1</u>

Elevation corresponding to scheduled time to clean out = 527.10 ft.

c. Distance below top of riser, h

h = Riser Crest Elevation - Elevation at 50% of basin storage volume

h = 528.00 - 527.10

h = 0.9 ft.

3) Minimum Basin Surface Area,

$$As = 0.01 \times Q_{p(10)} \quad \underline{or} \quad 0.015 \times DA$$

 $As = 0.01 \times Q_{p(10)}$

As = 0.01 x 18.54

As = 0.185 ac

or $As = 0.015 \times DA$

 $As = 0.015 \quad x \quad 12.36$

As = 0.185 ac

Use As = $\frac{0.185}{0.185}$ ac which is greater than As = 0.185 ac

B. DESIGN OF SPILLWAY AND ELEVATIONS

Bottom of Basin = 524.0

Runoff:

4) $Q_{p(10)} = 18.54$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = 0.2 x DA = 2.47 cfs

6) H = 529.0 - 522.0 = 7.0 ft.

Barrel Length, L 100 ft

7) Barrel Diameter, Dp = 18 inches

Q = 14.50 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = 0.88 (Fig. 5A.26- Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 12.76 cfs

8) Riser Diameter = 24 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 528.0 - 524.0 = 4 ft.

Required, h = 0.7 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

Riser Crest Elevation = Emergency Spillway Elevation - h

529.0 - 1.0

= 528.0 ft.

9) Trash Rack Diameter = 36" (Fig. 5A.29 (2))

H = 13'' (Fig. 5A.29(2))

Emergency Spillway Design

10) Emergency Spillway Flow, $Q_{es} = Q_p - Q_{ps}$

= 18.54 - 12.76 = 5.78 cfs

11) Width of spillway = 10 ft.

 $Q_{es} = CLH^{3/2}$

 $5.78 = 3.1 L^*(Hp^1.5)$

Hp = 0.33 ft

Spillway Elevation = 529.0

Design High Water Elevation = Spillway Elevation + Hp

= 529.0 + 0.33

= 529.3

Top of Dam Elevation = 530.3 (1 ft freeboard)

C. ANTI-SEEP COLLAR/ SEEPAGE DIAPHRAGM DESIGN

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 529.3

Distance from upstream invert to highest water level, y = ft.

Slope upstream embankment, Z = 2

> pipe slope = 0.0202.0%

:1

ft.

(Fig. 5A.31 - Anti-Seep Collar Design Charts)

Length of pipe in saturated zone, $L_s = \frac{26}{100}$ ft.

Required collar number = 2

Anti-Seep collar size = 3.25 ft.

Outlet pipe size = 1.5 ft.

Projection = 0.9 ft.

Collar spacing is between = 4.5 ft. to 12.3 ft.

Provided collar spacing = 10.0 ft.

D. DEWATERING ORIFICE SIZING

As x (2 x h)^{0.5} 13) Αo As = 0.185 ac 122,568 0.9

 $0.088 ft^2$

 d_0 0.336 ft. 4.03 inches

Provide 4-inch diameter hole at elevation 527.10 for dewatering orifice

VHB Engineering, Surveying Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York Date: 1/14/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA A104 (SB #4)

Drainage Area = 11.58 acres

Riser Crest Elevation = Emergency Spillway Elevation - Req'd 1-foot of freeboard

= 583.50 - 1

= 582.50

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 17.40 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - = 1551.7 cu.yds.
 - = 0.962 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 1551.7
 - = 775.86 cu.yds.
 - = 0.481 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

Chart: Sediment Basin Design Elevation VS Volume

								1	2	1-2=3
Contour		Conto	ır Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
578	6111		0.1403							
		6745		0.1548	2	13490	0.3097	0.3097	0.9618	-0.6521
580	7379		0.1694							
		8063		0.1851	2	16126	0.3702	0.6799	0.9618	-0.2819
582	8747		0.2008							
		9482		0.2177	2	18963	0.4353	1.1152	0.9618	0.1534
584	10216		0.2345							

Interpolated Elevation for scheduled time to clean out = 580.9

Elevation corresponding to scheduled time to clean out = 581.00 ft.

c. Distance below top of riser, h

 $\begin{array}{ll} h = Riser\ Crest\ Elevation\ -\ Elevation\ at\ 50\%\ of\ basin\ storage\ volume\\ h = 582.50 \quad - 581.00\\ h = 1.5 \quad ft. \end{array}$

3) Minimum Basin Surface Area,

As =
$$0.01 \times Q_{p(10)}$$
 or $0.015 \times DA$

 $As = 0.01 \times Q_{p(10)}$

As = 0.01 x 17.40

 $As = 0.174 \ ac$

 $\underline{\text{or}}$ As = 0.015 x DA

 $As = 0.015 \quad x \quad 11.58$

As = 0.174 ac

Use As = $\frac{0.174}{2}$ ac which is greater than As = $\frac{0.174}{2}$ ac

B. DESIGN OF SPILLWAY AND ELEVATIONS

Bottom of Basin = 578.0

Runoff:

4) $Q_{p(10)} = 17.40$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = $0.2 \times DA$ = 2.32 cfs

6) H = 583.5 - 576.0 = 7.5 ft.

Barrel Length, L 90 ft

7) Barrel Diameter, Dp = 18 inches

Q = 15.00 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = 0.91 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 13.65 cfs

8) Riser Diameter = 24 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 582.5 - 578.0 = 4.5 ft.

Required, h = 0.8 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

Riser Crest Elevation = Emergency Spillway Elevation - h

583.5 - 1.0

= 582.5 ft.

9) Trash Rack Diameter = 36" (Fig. 5A.29 (2))

H = 13'' (Fig. 5A.29(2))

Emergency Spillway Design

10) Emergency Spillway Flow, $Q_{es} = Q_p - Q_{ps}$

= 17.40 - 13.65 = 3.75 cfs

11) Width of spillway = 25 ft.

 $Q_{es} = CLH^{3/2}$

 $3.75 = 3.1 L^*(Hp^1.5)$

Hp = 0.13 ft

Spillway Elevation = 583.5

Design High Water Elevation = Spillway Elevation + Hp

= 583.5 + 0.13

= 583.6

Top of Dam Elevation = 584.6 (1 ft freeboard)

C. ANTI-SEEP COLLAR/ SEEPAGE DIAPHRAGM DESIGN

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 583.6

Distance from upstream invert to highest water level, $y = \frac{4.5}{}$ ft.

Slope upstream embankment, Z = 2 :1

pipe slope = 0.022

2.2%

(Fig. 5A.31 - Anti-Seep Collar Design Charts)

Length of pipe in saturated zone, $L_s = \frac{30}{100}$ ft.

Required collar number = 2

Anti-Seep collar size = 3.75 ft.

Outlet pipe size = 1.5 f

Projection = 1.1 ft.

Collar spacing is between = 5.5 ft. to 15.8 ft.

Provided collar spacing = 10.0 ft.

D. DEWATERING ORIFICE SIZING

13) Ao = $\frac{\text{As x } (2 \text{ x h})^{0.5}}{122,568}$

As = 0.174 ac h = 1.5 ft.

 $\frac{3.14 \, d_0^2}{4} = 0.107 \, \text{ft}^2$

 $d_0 = 0.369$ ft. = 4.43 inches

Provide 4-inch diameter hole at elevation

581.00

for dewatering orifice

VHB Engineering, Surveying Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York Project: 1/16/2014
Project: Silo Ridge
Project No: 29011

Calculated By: <u>JC</u>
Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA A104 - LOWER PART (SB #5)

Drainage Area = 9.25 acres

Riser Crest Elevation = Emergency Spillway Elevation - Req'd 1-foot of freeboard

= 513.00 - 1

= 512.00

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 13.90 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - = 1239.5 cu.yds.
 - = 0.768 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 1239.5
 - = 619.75 cu.yds.
 - = 0.384 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

Chart: Sediment Basin Design Elevation VS Volume

								1	2	1-2=3
Contour		Conto	ır Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed		Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
508	6111		0.1403							
		6745		0.1548	2	13490	0.3097	0.3097	0.7683	-0.4586
510	7379		0.1694							
		8063		0.1851	2	16126	0.3702	0.6799	0.7683	-0.0884
512	8747		0.2008							
		9482		0.2177	2	18963	0.4353	1.1152	0.7683	0.3469
514	10216		0.2345							

Volume/elevation corresponding to scheduled time to clean out = $\frac{\text{Cumulative}}{\text{Volume (ac-ft)}}$ Elevation Range: High: Low: $\frac{\text{Clev. (ft.)}}{\text{512.00}}$ 0.384

Interpolated Elevation for scheduled time to clean out = 510.4

Elevation corresponding to scheduled time to clean out = 510.50 ft.

c. Distance below top of riser, h

 $h = Riser\ Crest\ Elevation$ - Elevation at 50% of basin storage volume h = 512.00 - 510.50

h = 1.5 ft.

3) Minimum Basin Surface Area,

 $As = 0.01 \times Q_{p(10)} \quad \underline{or} \quad 0.015 \times DA$

 $As = 0.01 \times Q_{p(10)}$

As = 0.01 x 13.90

 $As = 0.139 \ ac$

or $As = 0.015 \times DA$

 $As = 0.015 \quad x \quad 9.25$

 $As = 0.139 \ ac$

Use As = $\frac{0.139}{0.139}$ ac which is greater than As = 0.139 ac

B. DESIGN OF SPILLWAY AND ELEVATIONS

Bottom of Basin = 508.0

Runoff:

4) $Q_{p(10)} = 13.90$ cfs

Pipe Spillway (Qps)

- 5) Minimum Pipe Spillway Capacity, Qps = 0.2 x DA = 1.85 cfs
- 6) H = 513.0 507.0 = 6.0 ft.

Barrel Length, L 120 ft

7) Barrel Diameter, Dp = 18 inches

Q = $\frac{13.40}{0.82}$ cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 10.99 cfs

8) Riser Diameter = 24 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 512.0 - 508.0

= 4 ft.

Required, h = 0.7 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

Riser Crest Elevation = Emergency Spillway Elevation - h

513.0 - 1.0 512.0 ft.

= 312.0 It.

9) Trash Rack Diameter = 36" (Fig. 5A.29 (2))

H = 13'' (Fig. 5A.29(2))

Emergency Spillway Design

- 10) Emergency Spillway Flow, Q_{es} = $Q_p Q_{ps}$ = 13.90 10.99 = 2.91 cfs
- 11) Width of spillway = 10 ft.

 $Q_{es} = CLH^{3/2}$

 $2.91 = 3.1*L*(Hp^1.5)$

Hp = 0.21 ft

Spillway Elevation = 513.0

Design High Water Elevation = Spillway Elevation + Hp

= 513.0 + 0.21

= 513.2

Top of Dam Elevation = 514.2 (1 ft freeboard)

C. ANTI-SEEP COLLAR/ SEEPAGE DIAPHRAGM DESIGN

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 513.2

Distance from upstream invert to highest water level, y = ft.

Slope upstream embankment, Z = 2 :1

> pipe slope = 0.0131.3%

Length of pipe in saturated zone, $L_s = \frac{25}{100}$ ft.

Required collar number = 2

Anti-Seep collar size = 3.25 ft.

Outlet pipe size = 1.5 ft. Projection = 0.9 ft.

Collar spacing is between = 4.5 ft. to

Provided collar spacing = 10.0 ft.

(Fig. 5A.31 - Anti-Seep Collar Design Charts)

12.3 ft.

1.5 ft.

D. DEWATERING ORIFICE SIZING

As x (2 x h)^{0.5} 13) Αo $As = 0.139 \ ac$ 122,568

0.086 ft²

 d_0 0.330 ft. 3.96 inches

Provide 4-inch diameter hole at elevation for dewatering orifice

510.50

Project: 1/20/2014
Project: Silo Ridge
Project No: 29011

Calculated By: <u>JC</u>
Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA A105 (SB #6)

Drainage Area = 13.8 acres

Riser Crest Elevation = Emergency Spillway Elevation - Req'd 1-foot of freeboard

= 579.00 - 1

= 578.00

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 15.40 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)

= 134 cu.yds/ac x Drainage Area (acres) = 1849.2 cu.yds.

= 1.146 ac-ft

- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.

= 50% of 1849.2

= 924.6 cu.yds.

= 0.573 ac-ft

b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

								1	2	1-2=3
Contour		Conto	ır Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
574	7009		0.1609							
		7688		0.1765	2	15375	0.3530	0.3530	1.1462	-0.7932
576	8366		0.1921							
		9095		0.2088	2	18190	0.4176	0.7705	1.1462	-0.3757
578	9824		0.2255							
		10603		0.2434	2	21206	0.4868	1.2574	1.1462	0.1112
580	11382		0.2613							

Volume/elevation corresponding to scheduled time to clean out = $\frac{\text{Cumulative }}{\text{Volume (ac-ft)}}$ Elevation Range: High: $\frac{\text{Low:}}{\text{576.00}}$ 0.3530

Interpolated Elevation for scheduled time to clean out = <u>577.1</u>

Elevation corresponding to scheduled time to clean out = 577.10 ft.

c. Distance below top of riser, h

 $h = Riser\ Crest\ Elevation$ - Elevation at 50% of basin storage volume h = 579.00 - 577.10

h = 379.00 - 377 h = 1.9 ft.

3) Minimum Basin Surface Area,

 $As = 0.01 \times Q_{p(10)} \quad or \quad 0.015 \times DA$

 $As = 0.01 \times Q_{p(10)}$ $As = 0.01 \times 15.40$

 $As = 0.154 \ ac$

 $\underline{\text{or}}$ As = 0.015 x DA

 $As = 0.015 \quad x \quad 13.8$

As = 0.207 ac

Use As = $\frac{0.207}{0.207}$ ac which is greater than As = 0.154 ac

Bottom of Basin = 574.0

Runoff:

4) $Q_{p(10)} = 15.40$ cfs

Pipe Spillway (Qps)

- 5) Minimum Pipe Spillway Capacity, Qps = 0.2 x DA = 2.76 cfs
- 6) H = 579.0 572.5 = 6.5 ft.

Barrel Length, L 85 ft

7) Barrel Diameter, Dp = 18 inches

Q = 13.95 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = 0.93 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 12.97 cfs

8) Riser Diameter = 24 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 578.0 - 574.0 = 4 ft.

Required, h = 0.8 ft. (Fig. 5A.25 - Riser Inflow Chart) Provided, h = 1.0 ft.

Riser Crest Elevation = Emergency Spillway Elevation - h

579.0 - 1.0 578.0 ft.

9) Trash Rack Diameter = 36" (Fig. 5A.29 (2))

H = 13" (Fig. 5A.29(2))

Emergency Spillway Design

- 10) Emergency Spillway Flow, Q_{es} = Q_p Q_{ps} = 15.40 12.97 = 2.43 cfs
- 11) Width of spillway = $\frac{5}{\text{CLH}^{3/2}}$ ft.

$$2.43 = 3.1*L*(Hp^1.5)$$

Hp = **0.29** ft

Spillway Elevation = 579.0

Design High Water Elevation = Spillway Elevation + Hp

= 579.0 + 0.29 = 579.3

Top of Dam Elevation = 580.3 (1 ft freeboard)

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 579.3

Distance from upstream invert to highest water level, y = 4.0 ft.

Slope upstream embankment, Z = 2

pipe slope = 0.017

1.7%

12.3 ft.

As = 0.207 ac

1.9 ft.

(Fig. 5A.31 - Anti-Seep Collar Design Charts)

Length of pipe in saturated zone, $L_s = \frac{26}{}$ ft.

Required collar number = 2

Anti-Seep collar size = 3.25 ft.

Outlet pipe size = 1.5 ft. Projection = 0.9 ft.

Collar spacing is between = 4.5 ft. to

Provided collar spacing = 10.0 ft.

D. DEWATERING ORIFICE SIZING

13) Ao =
$$\frac{\text{As x } (2 \text{ x h})^{0.5}}{122,568}$$

 $3.14 \, d_0^2 = 0.143 \, \text{ft}^2$

 $d_0 = 0.427$ ft. = 5.13 inches

Provide 5-inch diameter hole at elevation for dewatering orifice

577.10

Project: 1/20/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA A103 (SB #7)

Drainage Area = 57.5 acres
Riser Crest Elevation = 503

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 24.75 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - = 7705 cu.yds.
 - = 4.776 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 7705
 - = 3852.5 cu.yds.
 - = 2.388 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

								1	2	1-2=3
Contour		Conto	ur Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
496	29906		0.6865							
498	20720	31322	0.7540	0.7191	2	62644	1.4381	1.4381	4.7758	-3.3377
490	32738	34204	0.7516	0.7852	2	68408	1.5704	3.0085	4.7758	-1.7673
500	35670	37187	0.8189	0.8537	2	74373	1.7074	4.7159	4.7758	-0.0599
502	38703		0.8885		_					
504	41836	40270	0.9604	0.9245	2	80539	1.8489	6.5648	4.7758	1.7890

Volume/elevation corresponding to scheduled time to clean out = Elevation Range: High: Low: Cumulative Volume (ac-ft) Volume (ac-ft)

Cumulative Elev. (ft.) Volume (ac-ft)

X 2.388

Elevation Range: High: Low: 498.00 1.4381

Interpolated Elevation for scheduled time to clean out = 499.2

c. Distance below top of riser, h

 $\begin{array}{ll} h = Riser\ Crest\ Elevation\ -\ Elevation\ at\ 50\%\ of\ basin\ storage\ volume\\ h = 503.00 \quad - \quad 500.00\\ h = \quad 3 \quad ft. \end{array}$

0.248

ac

3) Minimum Basin Surface Area,

$$As = 0.01 \times Q_{p(10)} \quad \underline{or} \quad 0.015 \times DA$$

$$As = 0.01 \times Q_{p(10)}$$

$$As = 0.01 \times 24.75$$

$$As = 0.248 \times ac$$

$$\underline{or}$$

$$As = 0.015 \times DA$$

$$As = 0.015 \times 57.5$$

$$As = 0.863 \times ac$$

Use As = 0.863 ac which is greater than As =

Bottom of Basin = 496.0

Runoff:

4) $Q_{p(10)} = 24.75$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = $0.2 \times DA$ = 11.50 cfs

6) H = 503.0 - 499.0 = 4.0 ft.

Barrel Length, L 140 ft

7) Barrel Diameter, Dp = 30 inches

Q = $\frac{32.60}{0.81}$ cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 26.41 cfs

8) Riser Diameter = 36 inches

Length of Riser = Riser Crest Elevation - Elevation at 50% of basin storage volume

= 503.0 - 500.0 = 3.0 ft.

Required, h = 0.9 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

9) Trash Rack Diameter = 54" (Fig. 5A.29 (2))

H = 17'' (Fig. 5A.29(2))

Design High Water Elevation = Riser Crest Elevation + h

= 503.0 + 1.00

= 504.0

Top of Dam Elevation = 504.0

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 504.0

Distance from upstream invert to highest water level, y =

am invert to highest water level, y = 3.0 ft. Slope upstream embankment, Z = 2:1

pipe slope = 0.007 0.7%

Length of pipe in saturated zone, $L_s = \frac{19}{19}$ ft.

Required collar number = 3
Anti-Seep collar size = 3.50 ft. (Fig. 5A.31 - Anti-Seep Collar Design Charts)

Anti-Seep collar size = 3.50 ft.
Outlet pipe size = 2.5 ft.

Projection = 0.5 ft.

Collar spacing is between = 2.5 ft. to 7.0 ft.

Provided collar spacing = 7.0 ft.

D. **DEWATERING ORIFICE SIZING**

13) Ao = $As \times (2 \times h)^{0.5}$ As = 0.863 ac 122,568 h = 3 ft.

 $\frac{3.14 \text{ d}_0^2}{4}$ = 0.751 ft²

 $d_0 = 0.978 \text{ ft.}$ = 11.74 inches

Provide 12-inch diameter hole at elevation 500.00 for dewatering orifice

Date:	1/24/2014
Project:	Silo Ridge
Project No:	29011

Calculated	By:	JC
Checked	By:	

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA B102 & B103 (SB #8)

Drainage Area = 16.15 acres
Riser Crest Elevation = 516

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 14.35 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - = 2164.1 cu.yds.
 - = 1.341 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 2164.1
 - = 1082.1 cu.yds.
 - = 0.671 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

								1	2	1-2=3
Contour		Conto	ır Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
512	8601		0.1975							
		9480		0.2176	2	18959	0.4352	0.4352	1.3414	-0.9061
514	10358		0.2378							
		11287		0.2591	2	22573	0.5182	0.9534	1.3414	-0.3879
516	12215		0.2804							
		13194		0.3029	2	26388	0.6058	1.5592	1.3414	0.2178
518	14173		0.3254							

Volume/elevation corresponding to scheduled time to clean out = Elevation Range: High:

Cumulative
Elev. (ft.) Volume (ac-ft)
out = X 0.671
High: 516.00 0.9534
Low: 514.00 0.4352

Interpolated Elevation for scheduled time to clean out = 514.9

Elevation corresponding to scheduled time to clean out = 515.00 ft.

c. Distance below top of riser, h

h = Riser Crest Elevation - Elevation at 50% of basin storage volume

h = 516.00 - 515.00

h = 1 ft.

3) Minimum Basin Surface Area,

$$As = 0.01 \times Q_{p(10)} \quad or \quad 0.015 \times DA$$

 $As = 0.01 \times Q_{p(10)}$

 $As = 0.01 \times 14.35$

 $As = 0.144 \ ac$

 $\underline{\text{or}}$ As = 0.015 x DA

As = 0.015 x 16.15

As = 0.242 ac

Use As = $\frac{0.242}{0.242}$ ac which is greater than As = 0.144 ac

Bottom of Basin = 512.0

Runoff:

4) $Q_{p(10)} = 14.35$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = $0.2 \times DA$ = 3.23 cfs

6) H = 516.0 - 508.5 = 7.5 ft.

Barrel Length, L 60 ft

7) Barrel Diameter, Dp = 18 inches

Q = 13.95 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = 1.05 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 14.65 cfs

8) Riser Diameter = 24 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 516.0 - 512.0 = 4.0 ft.

Required, h = 0.9 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

9) Trash Rack Diameter = 36" (Fig. 5A.29 (2))

H = 13'' (Fig. 5A.29(2))

Design High Water Elevation = Riser Crest Elevation + h

= 516.0 + 1.00 = 517.0

Top of Dam Elevation = 518.0

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

ft.

12) Expected highest water elevation 517.0

Distance from upstream invert to highest water level, y = ft. :1

Slope upstream embankment, Z = 2

pipe slope = 0.058

 $As = 0.242 \ ac$

1

ft.

5.8%

(Fig. 5A.31 - Anti-Seep Collar Design Charts)

Length of pipe in saturated zone, L_s = 31 ft.

Required collar number = 2 Anti-Seep collar size = 3.75 ft.

> Outlet pipe size = 1.5

Projection = 1.1 ft.

Collar spacing is between = 5.5 ft. to 15.8 ft.

Provided collar spacing = 8.0 ft.

D. DEWATERING ORIFICE SIZING

As x (2 x h)^{0.5} 13) Αo 122,568

 d_0 0.394 ft. 4.73 inches

Provide 4-inch diameter hole at elevation

515.00

for dewatering orifice

Project: 1/24/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA B117 (SB #8A)

Drainage Area = 7.2 acres
Riser Crest Elevation = 514

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 3.68 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - = 964.8 cu.yds.
 - = 0.598 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 964.8
 - = 482.4 cu.yds.
 - = 0.299 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

								1	2	1-2=3
Contour		Conto	ır Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed		Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
510	3344		0.0768							
		3826		0.0878	2	7652	0.1757	0.1757	0.5980	-0.4224
512	4308		0.0989							
		4841		0.1111	2	9681	0.2222	0.3979	0.5980	-0.2001
514	5373		0.1233							
		5956		0.1367	2	11911	0.2734	0.6713	0.5980	0.0733
516	6538		0.1501							

Volume/elevation corresponding to scheduled time to clean out = $\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

Interpolated Elevation for scheduled time to clean out = 513.1

Elevation corresponding to scheduled time to clean out = 513.10 ft.

c. Distance below top of riser, h

h = Riser Crest Elevation - Elevation at 50% of basin storage volume

h = 514.00 - 513.10

h = 0.9 ft.

3) Minimum Basin Surface Area,

$$As = 0.01 \times Q_{p(10)} \quad or \quad 0.015 \times DA$$

 $As = 0.01 \times Q_{p(10)}$

As = 0.01 x 3.68

As = 0.037 ac

 $\underline{\text{or}}$ As = 0.015 x DA

 $As = 0.015 \quad x \quad 7.2$

 $As = 0.108 \ ac$

Use As = $\frac{0.108}{0.108}$ ac which is greater than As = $\frac{0.037}{0.037}$

Bottom of Basin = 510.0

Runoff:

4) $Q_{p(10)} = 3.68$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = $0.2 \times DA$ = 1.44 cfs

6) H = 514.0 - 508.0 = 6.0 ft.

Barrel Length, L 60 ft

7) Barrel Diameter, Dp = 15 inches

Q = 8.50 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = 1 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 8.50 cfs

8) Riser Diameter = 18 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 514.0 - 510.0 = 4.0 ft.

Required, h = 0.8 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

9) Trash Rack Diameter = 27" (Fig. 5A.29 (2))

H = 8" (Fig. 5A.29(2))

Design High Water Elevation = Riser Crest Elevation + h

= 514.0 + 1.00

= 515.0

Top of Dam Elevation = 516.0

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 515.0

Distance from upstream invert to highest water level, y = ft.

Slope upstream embankment, Z = 2 :1 pipe slope = 0.033

3.3%

Length of pipe in saturated zone, $L_s =$ 28 ft.

Required collar number = 2 (Fig. 5A.31 - Anti-Seep Collar Design Charts)

Anti-Seep collar size = 3.50 ft.

Outlet pipe size = 1.25 ft. Projection = 1.1 ft.

Collar spacing is between = 5.5

ft. to 15.8 ft.

Provided collar spacing = 10.0 ft.

D. DEWATERING ORIFICE SIZING

As x (2 x h)^{0.5} 13) Αo $As = 0.108 \ ac$ 122,568 0.9 ft.

0.051 ft²

 d_0 0.256 ft. 3.07 inches

Provide 3-inch diameter hole at elevation 513.10 for dewatering orifice

Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA B104, B110 & B115 (SB #9)

Drainage Area = 26.1 acres

Riser Crest Elevation = Emergency Spillway Elevation - Req'd 1-foot of freeboard

= 523.30 - 1.3

= 522.00

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 59.50 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)

= 134 cu.yds/ac x Drainage Area (acres) = 3497.4 cu.yds.

= 2.168 ac-ft

- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.

= 50% of 3497.4

= 1748.7 cu.yds.

= 1.084 ac-ft

b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

								1	2	1-2=3
Contour		Conto	ur Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
516	8939		0.2052							
		9841		0.2259	2	19681	0.4518	0.4518	2.1678	-1.7160
518	10742	11694	0.2466	0.2685	2	23388	0.5369	0.9887	2.1678	-1.1791
520	12646	13648	0.2903	0.3133	2	27296	0.6266	1.6154	2.1678	-0.5525
522	14650		0.3363		_					
524	16755	15703	0.3846	0.3605	2	31405	0.7210	2.3363	2.1678	0.1685

Volume/elevation corresponding to scheduled time to clean out = Elevation Range: High:

	Elev. (ft.)	Cumulative Volume (ac-ft)
out =	Χ	1.084
High:	522.00	1.6154
Low:	520.00	0.9887

Interpolated Elevation for scheduled time to clean out = 520.3

Elevation corresponding to scheduled time to clean out = 520.30 ft.

c. Distance below top of riser, h

h = Riser Crest Elevation - Elevation at 50% of basin storage volume

h = 522.00 - 520.30

h = 1.7 ft.

3) Minimum Basin Surface Area,

 $As = 0.01 \times Q_{p(10)} \quad \underline{or} \quad 0.015 \times DA$

 $As = 0.01 \times Q_{p(10)}$

 $As = 0.01 \quad x \quad 59.50$

As = 0.595 ac

 $\underline{\text{or}}$ As = 0.015 x DA

As = 0.015 x 26.1

 $As = 0.392 \ ac$

Use As = $\frac{0.595}{0.595}$ ac which is greater than As = 0.392 ac

Bottom of Basin = 516.0

Runoff:

4) $Q_{p(10)} = 59.50$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = 0.2 x DA = 5.22 cfs

6) H = 523.3 - 515.0 = 8.3 ft.

Barrel Length, L 90 ft

7) Barrel Diameter, Dp = 30 inches

Q = 53.20 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = 0.93 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 49.48 cfs

8) Riser Diameter = 42 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 522.0 - 516.0 = 6 ft.

Required, h = 1.3 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.3 ft.

Riser Crest Elevation = Emergency Spillway Elevation - h

523.3 - 1.3

= 522.0 ft.

9) Trash Rack Diameter = 60" (Fig. 5A.29 (2))

H = 19'' (Fig. 5A.29(2))

Emergency Spillway Design

10) Emergency Spillway Flow, $Q_{es} = Q_p - Q_{ps}$

= 59.50 - 49.48

= 10.02 cfs

11) Width of spillway = $\frac{20}{100}$ ft.

 $\mathsf{Q}_{\mathsf{es}} = \mathsf{CLH}^{3/2}$

 $10.02 = 3.1 L^*(Hp^1.5)$

Hp = 0.30 ft

Spillway Elevation = 523.3

Design High Water Elevation = Spillway Elevation + Hp

= 523.3 + 0.30

= 523.6

Top of Dam Elevation = 524.6 (1 ft freeboard)

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 523.6

Distance from upstream invert to highest water level, y = 6.0 ft.

Slope upstream embankment, Z = 2 :1

pipe slope = 0.011 1.1%

Length of pipe in saturated zone, $L_s = \frac{38}{100}$ ft.

Required collar number = 3 (Fig. 5A.31 - Anti-Seep Collar Design Charts)

Anti-Seep collar size = 4.50 ft.
Outlet pipe size = 2.5 ft.

Projection = 1.0 ft.

Collar spacing is between = 5.0 ft. to 14.0 ft.

Provided collar spacing = 10.0 ft.

D. DEWATERING ORIFICE SIZING

13) Ao =
$$\frac{\text{As x } (2 \text{ x h})^{0.5}}{122,568}$$
 As = 0.595 ac h = 1.7 ft.

 $\frac{3.14 \, d_0^2}{4} = 0.390 \, \text{ft}^2$

 $d_0 = 0.705$ ft. = 8.46 inches

Provide 8-inch diameter hole at elevation 520.30 for dewatering orifice

Project: Silo Ridge
Project No: 29011

Calculated By: <u>JC</u>
Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA B105 & B111 (SB #10)

Drainage Area = 12.6 acres

Riser Crest Elevation = Emergency Spillway Elevation - Req'd 1-foot of freeboard

= 523.20 - 1

= 522.20

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 40.00 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)

= 134 cu.yds/ac x Drainage Area (acres) = 1688.4 cu.yds.

= 1.047 ac-ft

- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.

= 50% of 1688.4

= 844.2 cu.yds.

= 0.523 ac-ft

b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

								1	2	1-2=3
Contour		Conto	ır Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed		Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
518	6140		0.1410							
		6779		0.1556	2	13557	0.3112	0.3112	1.0465	-0.7353
520	7417		0.1703							
		8106		0.1861	2	16211	0.3722	0.6834	1.0465	-0.3631
522	8794		0.2019							
		9533		0.2188	2	19066	0.4377	1.1211	1.0465	0.0745
524	10272		0.2358							

Volume/elevation corresponding to scheduled time to clean out = $\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & &$

Interpolated Elevation for scheduled time to clean out = <u>521.1</u>

Elevation corresponding to scheduled time to clean out = 521.10 ft.

c. Distance below top of riser, h

 $\begin{array}{ll} h = Riser\ Crest\ Elevation\ -\ Elevation\ at\ 50\%\ of\ basin\ storage\ volume\\ h = 522.20 \quad - 521.10\\ h = 1.1 \quad ft. \end{array}$

3) Minimum Basin Surface Area,

$$As = 0.01 \times Q_{p(10)} \quad \underline{or} \quad 0.015 \times DA$$

 $As = 0.01 \times Q_{p(10)}$

As = 0.01 x 40.00

 $As = 0.400 \ ac$

 $\underline{\text{or}}$ As = 0.015 x DA

 $As = 0.015 \quad x \quad 12.6$

 $As = 0.189 \ ac$

Use As = $\frac{0.400}{0.400}$ ac which is greater than As = 0.189 ac

Bottom of Basin = 518.0

Runoff:

4) $Q_{p(10)} = 40.00$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = 0.2 x DA = 2.52 cfs

6) H = 523.2 - 516.0 = 7.2 ft.

Barrel Length, L 65 ft

7) Barrel Diameter, Dp = 24 inches

Q = 29.20 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = 1 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 29.20 cfs

8) Riser Diameter = 36 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 522.2 - 518.0 = 4.2 ft.

Required, h = 1 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

Riser Crest Elevation = Emergency Spillway Elevation - h = 523.2 - 1.0 = 522.2 ft.

9) Trash Rack Diameter = 54" (Fig. 5A.29 (2))

H = 17" (Fig. 5A.29(2))

Emergency Spillway Design

10) Emergency Spillway Flow, Q_{es} = $Q_p - Q_{ps}$ = 40.00 - 29.20

= 10.80 cfs

11) Width of spillway = 12 ft.

 $Q_{es} = CLH^{3/2}$

 $10.80 = 3.1 L^*(Hp^1.5)$

Hp = 0.44 ft

Spillway Elevation = 523.2

Design High Water Elevation = Spillway Elevation + Hp

= 523.2 + 0.44

= 523.6

Top of Dam Elevation = 524.6 (1 ft freeboard)

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 523.6

Distance from upstream invert to highest water level, $y = \frac{4.2}{}$ ft.

Slope upstream embankment, Z = 2

pipe slope = 0.030 3.0%

 $As = 0.400 \ ac$

1.1

ft.

:1

(Fig. 5A.31 - Anti-Seep Collar Design Charts)

Length of pipe in saturated zone, $L_s = \frac{29}{100}$ ft.

Required collar number = 2

Anti-Seep collar size = $\frac{4.25}{6}$ ft.

Outlet pipe size = 2 ft.

Projection = 1.1 ft.

Collar spacing is between = 5.5 ft. to 15.8 ft.

Provided collar spacing = 10.0 ft.

D. DEWATERING ORIFICE SIZING

13) Ao = $\frac{\text{As x } (2 \text{ x h})^{0.5}}{122,568}$

 $3.14 \, d_0^2 = 0.211 \, \text{ft}^2$

 $d_0 = 0.518 \text{ ft.}$

= 6.22 inches

Provide 6-inch diameter hole at elevation for dewatering orifice

521.10

Project: Silo Ridge
Project No: 29011

Calculated By: <u>JC</u>
Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA B114 & B103 (SB #11)

Drainage Area = 7.95 acres

Riser Crest Elevation = Emergency Spillway Elevation - Req'd 1-foot of freeboard

= 557.20 - 1

= 556.20

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 24.00 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - = 1065.3 cu.yds.
 - = 0.660 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 1065.3
 - = 532.65 cu.yds.
 - = 0.330 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

								1	2	1-2=3
Contour		Conto	ur Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
552	3464		0.0795							
		4089		0.0939	2	8177	0.1877	0.1877	0.6603	-0.4726
554	4713		0.1082							
		5388		0.1237	2	10776	0.2474	0.4351	0.6603	-0.2252
556	6063		0.1392							
		6788		0.1558	2	13576	0.3117	0.7468	0.6603	0.0865
558	7513		0.1725							

Volume/elevation corresponding to scheduled time to clean out = $\frac{\text{Cumulative}}{\text{Volume (ac-ft)}}$ Elevation Range: High: Low: $\frac{\text{Elev. (ft.)}}{\text{556.00}}$ 0.4351 Low: $\frac{\text{Cumulative}}{\text{554.00}}$

Interpolated Elevation for scheduled time to clean out = <u>555.2</u>

Elevation corresponding to scheduled time to clean out = 555.20 ft.

c. Distance below top of riser, h

 $\begin{array}{ll} h = Riser\ Crest\ Elevation\ -\ Elevation\ at\ 50\%\ of\ basin\ storage\ volume\\ h = 556.20 & -\ 555.20\\ h = 1 & ft. \end{array}$

3) Minimum Basin Surface Area,

$$As = 0.01 \times Q_{p(10)} \quad \underline{or} \quad 0.015 \times DA$$

 $As = 0.01 \times Q_{p(10)}$

As = 0.01 x 24.00

 $As = 0.240 \ ac$

or $As = 0.015 \times DA$

 $As = 0.015 \quad x \quad 7.95$

 $As = 0.119 \ ac$

Use As = $\frac{0.240}{0.240}$ ac which is greater than As = 0.119 ac

Bottom of Basin = 552.0

Runoff:

4) $Q_{p(10)} = 24.00$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = 0.2 x DA = 1.59 cfs

6) H = 557.2 - 550.0 = 7.2 ft.

Barrel Length, L 50 ft

7) Barrel Diameter, Dp = 21 inches

Q = $\frac{21.10}{1.11}$ cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = $\frac{21.10}{1.11}$ (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 23.42 cfs

8) Riser Diameter = 36 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 556.2 - 552.0 = 4.2 ft.

Required, h = 0.9 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

Riser Crest Elevation = Emergency Spillway Elevation - h

557.2 - 1.0

= 556.2 ft.

9) Trash Rack Diameter = 54" (Fig. 5A.29 (2))

H = 17" (Fig. 5A.29(2))

Emergency Spillway Design

10) Emergency Spillway Flow, $Q_{es} = Q_p - Q_{ps}$

= 24.00 - 23.42 = 0.58 cfs

11) Width of spillway = 10 ft.

 $Q_{es} = CLH^{3/2}$

 $0.58 = 3.1 L^*(Hp^1.5)$

Hp = 0.07 ft

Spillway Elevation = 557.2

Design High Water Elevation = Spillway Elevation + Hp

= 557.2 + 0.07

= 557.3

Top of Dam Elevation = 558.3 (1 ft freeboard)

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 557.3

Distance from upstream invert to highest water level, y = 4.2 ft.

Slope upstream embankment, Z = 2 :1

pipe slope = 0.040 4.0%

Length of pipe in saturated zone, $L_s = \frac{30}{100}$ ft.

Required collar number = 2 (Fig. 5A.31 - Anti-Seep Collar Design Charts)

Anti-Seep collar size = 4.25 ft.
Outlet pipe size = 1.75 ft.

Projection = 1.3 ft.

Collar spacing is between = 6.5 ft. to 17.5 ft.

Provided collar spacing = 10.0 ft.

D. DEWATERING ORIFICE SIZING

13) Ao = $\frac{\text{As x } (2 \text{ x h})^{0.5}}{122,568}$ As = 0.240 ac h = 1 ft.

 $\frac{3.14 \, d_0^2}{4} = 0.121 \, \text{ft}^2$

 $d_0 = 0.392$ ft. = 4.70 inches

Provide 4.5-inch diameter hole at elevation 555.20 for dewatering orifice

Project: 1/20/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA C103 (SB #12)

Drainage Area = 3.8 acres
Riser Crest Elevation = 502

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 5.70 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - = 509.2 cu.yds.
 - = 0.316 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 509.2
 - = 254.6 cu.yds.
 - = 0.158 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

								1	2	1-2=3
Contour		Conto	ır Area			Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
498	1735		0.0398							
		2088		0.0479	2	4176	0.0959	0.0959	0.3156	-0.2198
500	2441		0.0560							
		2844		0.0653	2	5688	0.1306	0.2264	0.3156	-0.0892
502	3247		0.0745							
		3700		0.0849	2	7400	0.1699	0.3963	0.3156	0.0807
504	4153		0.0953							

Cumulative Elev. (ft.) Volume (ac-ft) Volume/elevation corresponding to scheduled time to clean out = Χ 0.158 502.00 Elevation Range: High: 0.2264 500.00 0.0959

> Interpolated Elevation for scheduled time to clean out = <u>500.9</u>

Elevation corresponding to scheduled time to clean out = 501.00 ft.

c. Distance below top of riser, h

h = Riser Crest Elevation - Elevation at 50% of basin storage volume

h = 502.00- 501.00

h = 1 ft.

3) Minimum Basin Surface Area,

$$As = 0.01 \times Q_{p(10)} \quad or \quad 0.015 \times DA$$

 $As = 0.01 \times Q_{p(10)}$

0.01 5.70

As = 0.057 ac

<u>or</u> $As = 0.015 \times DA$

As = 0.0153.8 Х

As = 0.057 ac

Use As = 0.057 ac which is greater than As = 0.057 ac

Bottom of Basin = 498.0

Runoff:

4) $Q_{p(10)} = 5.70$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = $0.2 \times DA$ = 0.76 cfs

6) H = 502.0 - 496.0 = 6.0 ft.

Barrel Length, L 140 ft.

7) Barrel Diameter, Dp = 15 inches

Q = 8.52 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = 0.76 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 6.48 cfs

8) Riser Diameter = 18 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 502.0 - 498.0 = 4.0 ft.

Required, h = 0.9 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

9) Trash Rack Diameter = 27" (Fig. 5A.29 (2))

H = 8" (Fig. 5A.29(2))

Design High Water Elevation = Riser Crest Elevation + h

= 502.0 + 1.00

= 503.0

Top of Dam Elevation = 504.0

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 503.0

Distance from upstream invert to highest water level, $y = \frac{4.0}{}$ ft.

Slope upstream embankment, Z = 2:

pipe slope = 0.014 1.4%

Length of pipe in saturated zone, $L_s = \frac{25}{}$ ft.

Required collar number = 2 (Fig. 5A.31 - Anti-Seep Collar Design Charts)

Anti-Seep collar size = $\frac{3.25}{}$ ft.

Outlet pipe size = 1.25 ft.

Projection = 1.0 ft.

Collar spacing is between = 5.0 ft. to 14.0 ft.

Provided collar spacing = 10.0 ft.

D. DEWATERING ORIFICE SIZING

13) Ao = $As \times (2 \times h)^{0.5}$ As = 0.057 ac 122,568 h = 1 ft.

 $\frac{3.14 \text{ d}_0^2}{4}$ = 0.029 ft²

 $d_0 = 0.191 \text{ ft.}$ = 2.29 inches

Provide 3-inch diameter hole at elevation 501.00 for dewatering orifice

52 of 64

Date:	1/20/2014
Project:	Silo Ridge
Project No:	29011

Calculated	By:	JC
Checked	By:	

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA B101 (SB #13)

Drainage Area = 35.9 acres
Riser Crest Elevation = 513

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 28.60 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - = 4810.6 cu.yds.
 - = 2.982 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 4810.6
 - = 2405.3 cu.yds.
 - = 1.491 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

								1	2	1-2=3
Contour	Contour Area					Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
506	13378		0.3071							
		14374		0.3300	2	28747	0.6599	0.6599	2.9818	-2.3218
508	15369		0.3528							
		16415		0.3768	2	32830	0.7537	1.4136	2.9818	-1.5682
510	17461		0.4008							
		18557		0.4260	2	37114	0.8520	2.2656	2.9818	-0.7161
512	19653		0.4512							
		20800		0.4775	2	41599	0.9550	3.2206	2.9818	0.2388
514	21946		0.5038							

Volume/elevation corresponding to scheduled time to clean out = Elevation Range: High: Low: Cumulative Volume (ac-ft)

Cumulative Elev. (ft.) Volume (ac-ft)

X 1.491

512.00 2.2656
Low: 510.00 1.4136

Interpolated Elevation for scheduled time to clean out = 510.2

Elevation corresponding to scheduled time to clean out = 510.20 ft.

c. Distance below top of riser, h

 $\begin{array}{ll} h = Riser\ Crest\ Elevation\ -\ Elevation\ at\ 50\%\ of\ basin\ storage\ volume\\ h = 513.00 \quad - \quad 510.20\\ h = 2.8 \quad ft. \end{array}$

3) Minimum Basin Surface Area,

 $As = 0.01 \times Q_{p(10)} \quad or \quad 0.015 \times DA$

 $As = 0.01 \times Q_{p(10)}$

As = 0.01 x 28.60

As = 0.286 ac

 $\underline{\text{or}}$ As = 0.015 x DA

 $As = 0.015 \times 35.9$

 $As = 0.539 \ ac$

Use As = $\frac{0.539}{0.539}$ ac which is greater than As = 0.286 ac

Bottom of Basin = 506.0

Runoff:

4) $Q_{p(10)} = 28.60$ cfs

Pipe Spillway (Qps)

- 5) Minimum Pipe Spillway Capacity, Qps = $0.2 \times DA$ = 7.18 cfs
- 6) H = 513.0 505.0 = 8.0 ft.

Barrel Length, L 70 ft

7) Barrel Diameter, Dp = 24 inches

Q = 31.20 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025)

Correction Factor = 0.96 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 29.95 cfs

8) Riser Diameter = 36 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 513.0 - 506.0 = 7.0 ft.

...

Required, h = 1 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

9) Trash Rack Diameter = 54" (Fig. 5A.29 (2))

H = 17'' (Fig. 5A.29(2))

Design High Water Elevation = Riser Crest Elevation + h

= 513.0 + 1.00

= 514.0

Top of Dam Elevation = 514.0

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 514.0

Distance from upstream invert to highest water level, y = 7.0 ft.

Slope upstream embankment, Z = 2 in the pipe slope = 0.014

pipe slope = $\frac{0.014}{44}$ t.

Provided collar spacing = 10.0 ft.

D. <u>DEWATERING ORIFICE SIZING</u>

13) Ao = $\frac{\text{As x } (2 \text{ x h})^{0.5}}{122,568}$ As = 0.539 ac h = 2.8 ft. $\frac{3.14 \text{ d}_0^2}{4}$ = 0.453 ft²

> $d_0 = 0.760$ ft. = 9.11 inches

Provide 9-inch diameter hole at elevation 510.20 for dewatering orifice

VHB Engineering, Surveying Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York Project: 1/20/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA B101 (SB #14)

Drainage Area = 4.6 acres
Riser Crest Elevation = 502.5

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 6.90 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - = 616.4 cu.yds.
 - = 0.382 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 616.4
 - = 308.2 cu.yds.
 - = 0.191 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

Chart: Sediment Basin Design Elevation VS Volume

								1	2	1-2=3
Contour	Contour Area					Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed	Average	Proposed	Average	Depth	Volume	Volume	Total Volume	Storage Volume	Volume
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
498	2065		0.0474							
		2448		0.0562	2	4896	0.1124	0.1124	0.3821	-0.2697
500	2831		0.0650							
		3265		0.0749	2	6529	0.1499	0.2623	0.3821	-0.1198
502	3698		0.0849							
		4182		0.0960	2	8363	0.1920	0.4543	0.3821	0.0722
504	4665		0.1071							

Volume/elevation corresponding to scheduled time to clean out = $\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

Interpolated Elevation for scheduled time to clean out = 501.0

Elevation corresponding to scheduled time to clean out = 501.00 ft.

c. Distance below top of riser, h

h = Riser Crest Elevation - Elevation at 50% of basin storage volume

h = 502.50 - 501.00

h = 1.5 ft.

3) Minimum Basin Surface Area,

$$As = 0.01 \times Q_{p(10)} \quad or \quad 0.015 \times DA$$

 $As = 0.01 \times Q_{p(10)}$

As = 0.01 x 6.90

As = 0.069 ac

 $\underline{\text{or}}$ As = 0.015 x DA

 $As = 0.015 \quad x \quad 4.6$

As = 0.069 ac

Use As = $\frac{0.069}{0.069}$ ac which is greater than As = 0.069 ac

B. DESIGN OF SPILLWAY AND ELEVATIONS

Bottom of Basin = 498.0

Runoff:

4) $Q_{p(10)} = 6.90$ cfs

Pipe Spillway (Qps)

5) Minimum Pipe Spillway Capacity, Qps = $0.2 \times DA$ = 0.92 cfs

6) H = 502.5 - 496.0 = 6.5 ft.

Barrel Length, L 50 ft.

7) Barrel Diameter, Dp = 15 inches

Q = 8.70 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025)

Correction Factor = 1.1 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 9.57 cfs

8) Riser Diameter = 18 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 502.5 - 498.0 = 4.5 ft.

Required, h = 0.6 ft. (Fig. 5A.25 - Riser Inflow Chart)

Provided, h = 1.0 ft.

9) Trash Rack Diameter = 27" (Fig. 5A.29 (2))

H = 8'' (Fig. 5A.29(2))

Design High Water Elevation = Riser Crest Elevation + h

= 502.5 + 1.00

= 503.5

Top of Dam Elevation = 504.5

C. ANTI-SEEP COLLAR/ SEEPAGE DIAPHRAGM DESIGN

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 503.5

Distance from upstream invert to highest water level, $y = \frac{4.5}{}$ ft.

Slope upstream embankment, Z = 2 :1

 $pipe slope = \frac{0.040}{22}$ 4.0%

(Fig. 5A.31 - Anti-Seep Collar Design Charts)

Length of pipe in saturated zone, $L_s = \frac{32}{100}$ ft.

Required collar number = 2

Anti-Seep collar size = 3.50 ft.

Outlet pipe size = 1.25 ft. Projection = 1.1 ft.

Collar spacing is between = 5.5 ft. to 15.8 ft.

Provided collar spacing = 10.0 ft.

D. DEWATERING ORIFICE SIZING

13) Ao =
$$\frac{\text{As x } (2 \text{ x h})^{0.5}}{122,568}$$

 $\frac{3.14 \, d_0^2}{4} = 0.042 \, \text{ft}^2$

 $d_0 = 0.233$ ft. = 2.79 inches

Provide 3-inch diameter hole at elevation

501.00

 $As = 0.069 \ ac$

1.5 ft.

for dewatering orifice

VHB Engineering, Surveying Landscape Architecture, P.C. 50 Main Street, Suite 360 White Plains, New York Project: 1/20/2014
Project: Silo Ridge
Project No: 29011

Calculated By: JC Checked By:

TEMPORARY SEDIMENT BASIN DESIGN FOR DRAINAGE AREA B108, B109 B 103 (SB #15)

Drainage Area = 99.6 acres

Riser Crest Elevation = Emergency Spillway Elevation - Req'd 1-foot of freeboard

= 504.50 - 1.5

= 503.00

Peak discharge for construction condition (from HydroCAD analysis):

Q_{p(10)}: 155.80 cfs

A. BASIN SIZE DESIGN REQUIREMENTS

- 1) Minimum Required Sediment Storage Volume (134 cu.yd./acre)
 - = 134 cu.yds/ac x Drainage Area (acres)
 - 13346 cu.yds.
 - = 8.273 ac-ft
- 2) Determine storage volume and elevation to be cleaned out when sediment has achieved 50% of basin storage volume.
 - a. Sediment basin shall be cleaned out when sediment has achieved 50% of basin storage volume.
 - = 50% of 13346
 - = 6673.2 cu.yds.
 - = 4.136 ac-ft
 - b. Elevation corresponding to scheduled time to clean out when sediment has achieved 50% of basin storage volume.

Chart: Sediment Basin Design Elevation VS Volume

								1	2	1-2=3
Contour	Contour Area					Total	Total	Cumulative	*Req'd Sediment	Net
Elev.	Proposed Average Proposed Average			Depth	Volume	Volume	Total Volume	Storage Volume	Volume	
(ft)	(ft ²)	(ft ²)	(ac)	(ac)	(ft)	(ft ³)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
400	00000		0.0450							
496	28098	30815	0.6450	0.7074	2	61629	1.4148	1.4148	8.2726	-6.8578
498	33531	000.0	0.7698	0 0	_	0.020			0.2.20	0.00.0
		36449		0.8367	2	72897	1.6735	3.0883	8.2726	-5.1843
500	39366		0.9037		_					
500	40005	42696	4.0500	0.9802	2	85391	1.9603	5.0486	8.2726	-3.2240
502	46025	50463	1.0566	1.1585	2	100925	2.3169	7.3655	8.2726	-0.9070
504	54900	30403	1.2603	1.1303		100923	2.5109	1.5055	0.2720	-0.3070
501	0.000	62727	2000	1.4400	2	125453	2.8800	10.2455	8.2726	1.9730
506	70553		1.6197							

Volume/elevation corresponding to scheduled time to clean out = Elevation Range: High:

 count
 Cumulative

 Volume (ac-ft)
 Volume (ac-ft)

 Figh:
 502.00
 5.0486

 Low:
 500.00
 3.0883

Interpolated Elevation for scheduled time to clean out = <u>501.1</u>

Elevation corresponding to scheduled time to clean out = 501.10 ft.

c. Distance below top of riser, h

h = Riser Crest Elevation - Elevation at 50% of basin storage volume

h = 503.00 - 501.10

h = 1.9 ft.

3) Minimum Basin Surface Area,

$$As = 0.01 \times Q_{p(10)} \quad or \quad 0.015 \times DA$$

 $As = 0.01 \times Q_{p(10)}$

As = 0.01 x 155.80

 $As = 1.558 \ ac$

 $\underline{\text{or}}$ As = 0.015 x DA

 $As = 0.015 \times 99.6$

As = 1.494 ac

Use As = $\frac{1.558}{2}$ ac which is greater than As = $\frac{1.494}{2}$ ac

B. DESIGN OF SPILLWAY AND ELEVATIONS

Bottom of Basin = 496.0

Runoff:

4) $Q_{p(10)} = 155.80$ cfs

Pipe Spillway (Qps)

- 5) Minimum Pipe Spillway Capacity, Qps = 0.2 x DA = 19.92 cfs
- 6) H = 504.5 495.0 = 9.5 ft.

Barrel Length, L 110 ft.

7) Barrel Diameter, Dp = 36 inches

Q = 88.90 cfs (Fig. 5A.26- Pipe flow chart; "n"=0.025) Correction Factor = 0.92 (Fig. 5A.26 - Pipe flow chart; "n"=0.025)

Qps = Q x Correction Factor = 81.79 cfs

8) Riser Diameter = 54 inches

Length of Riser = Riser Crest Elevation - Bottom of Basin

= 503.0 - 496.0 = 7 ft.

Required, h = 1.5 ft. (Fig. 5A.25 - Riser Inflow Chart) Provided, h = 1.5 ft.

Riser Crest Elevation = Emergency Spillway Elevation - h

504.5 - 1.5 503.0 ft.

9) Trash Rack Diameter = 78" (Fig. 5A.29 (2))

H = 25" (Fig. 5A.29(2))

Emergency Spillway Design

- 10) Emergency Spillway Flow, Q_{es} = Q_p Q_{ps} = 155.80 81.79 = 74.01 cfs
- 11) Width of spillway = $\frac{25}{\text{M}}$ ft. $Q_{es} = \text{CLH}^{3/2}$

74.01 = 3.1*L*(Hp^1.5)

Hp = 0.97 ft Spillway Elevation = 504.5

Design High Water Elevation = Spillway Elevation + Hp

= 504.5 + 0.97

= 505.5 Top of Dam Elevation = 506.5 (1 ft freeboard)

C. ANTI-SEEP COLLAR/ SEEPAGE DIAPHRAGM DESIGN

(Note: the length of pipe within saturated zone is determined graphically from Sediment basin cross section.)

12) Expected highest water elevation 505.5

Distance from upstream invert to highest water level, $y = \frac{7.0}{100}$ ft.

Slope upstream embankment, Z = 2:

pipe slope = 0.010 1.0%

Length of pipe in saturated zone, $L_s = \frac{44}{100}$ ft.

Required collar number = 2 [(Fig. 5A.31 - Anti-Seep Collar Design Charts)

Anti-Seep collar size = 6.25 ft.

Outlet pipe size = 3 ft. Projection = 1.6 ft.

Collar spacing is between = 8.0 ft. to 22.8 ft.

Provided collar spacing = 15.0 ft.

D. **DEWATERING ORIFICE SIZING**

13) Ao = $\frac{\text{As x } (2 \text{ x h})^{0.5}}{122,568}$ As = 1.558 ac h = 1.9 ft.

 $\frac{3.14 \, d_0^2}{4} = 1.079 \, \text{ft}^2$

 d_0 = 1.173 ft. = 14.07 inches

Provide 14-inch diameter hole at elevation 501.10 for dewatering orifice

F.E.S # 852 (Phase I)

Figure 5B.12

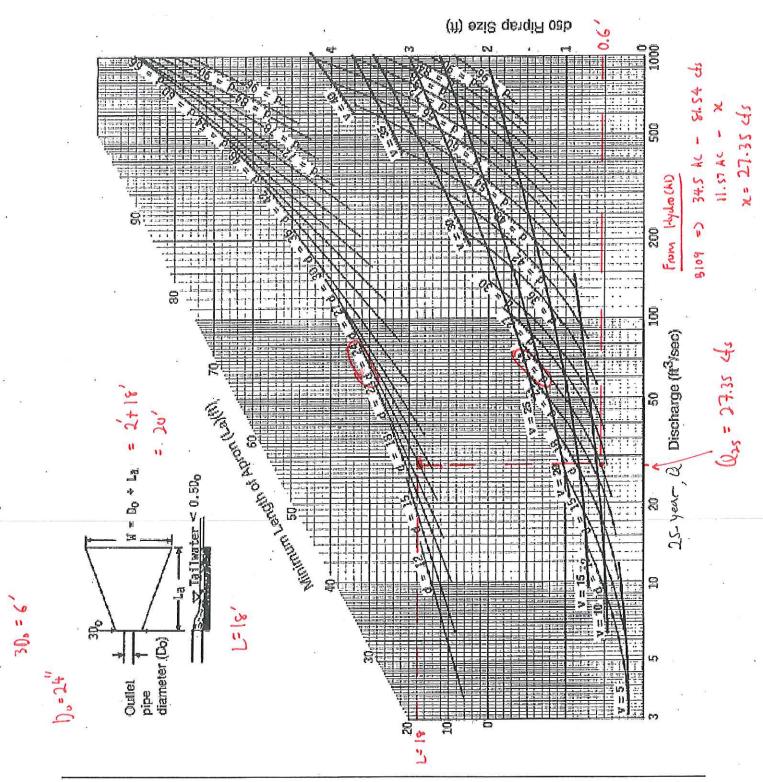
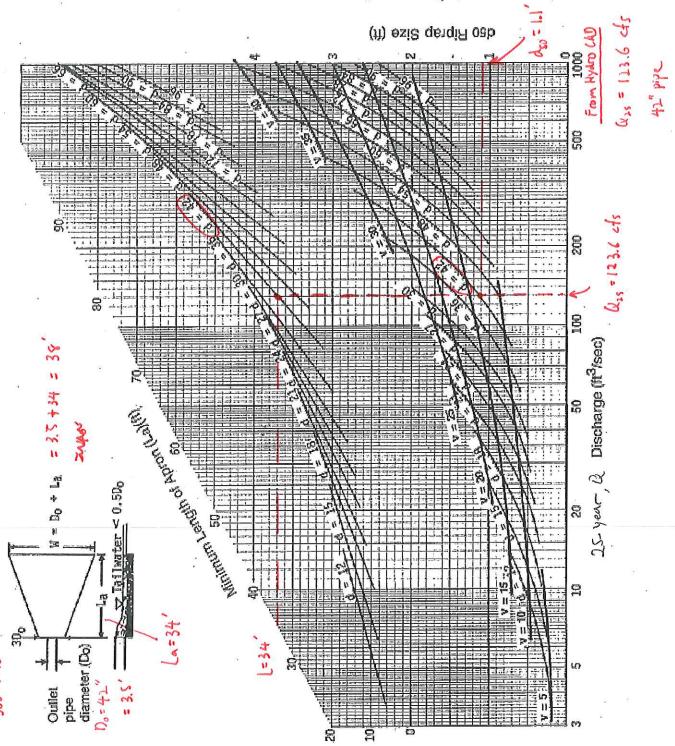
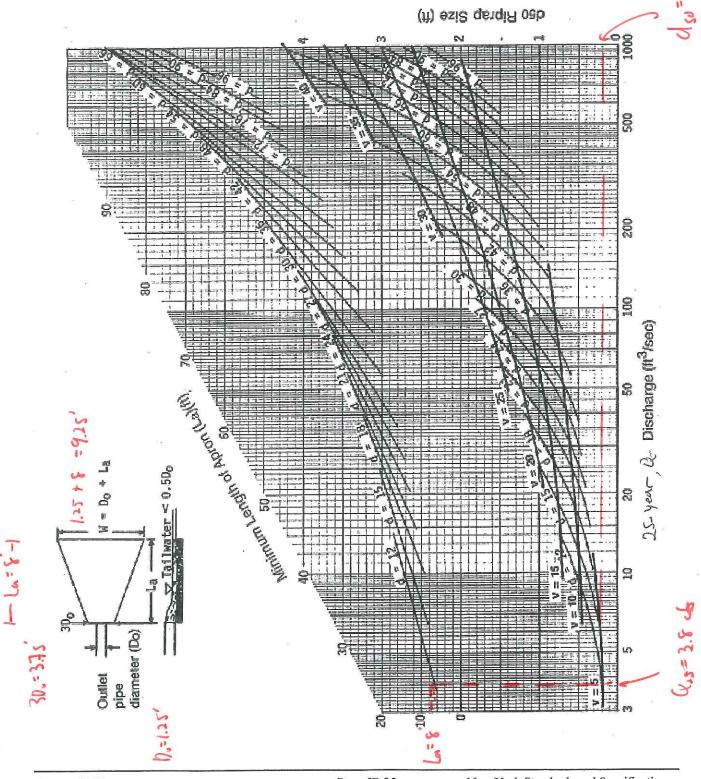




Figure 5B.12

Riprap / FES - 100 A

 $\label{eq:figure 5B.12} Figure 5B.12 \\ Outlet Protection Design—Minimum Tailwater Condition \\ (Design of Outlet Protection from a Round Pipe Flowing Full, \\ Minimum Tailwater Condition: T_w < 0.5D_o) \ (USDA - NRCS)$

Riprap Protection for FES-957C (Phase I)

Figure 5B.12

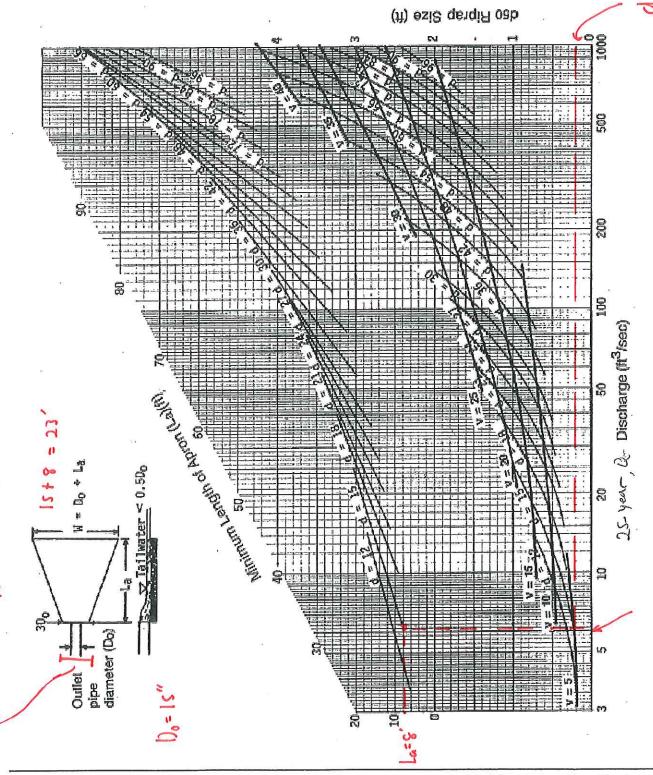


Figure 5B.12

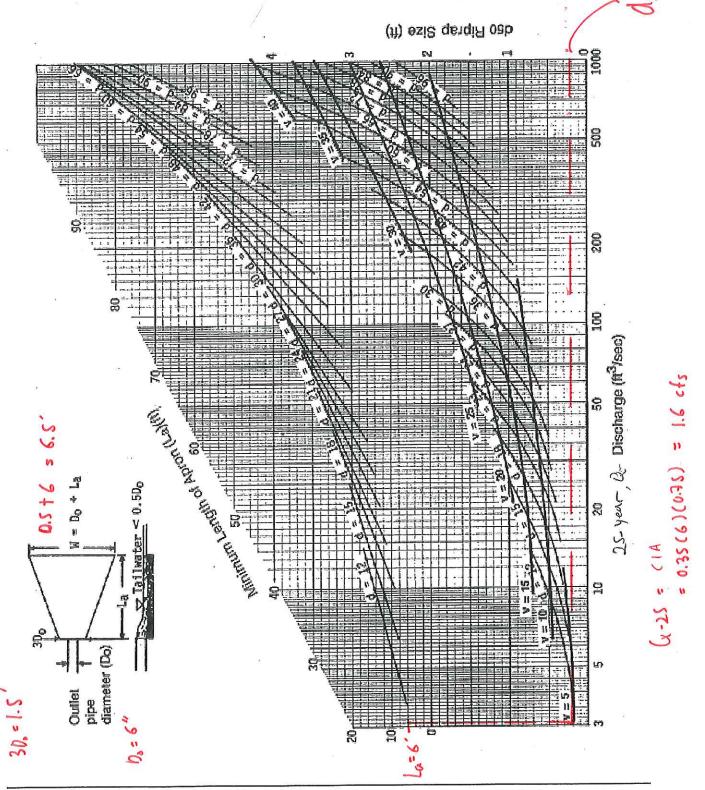
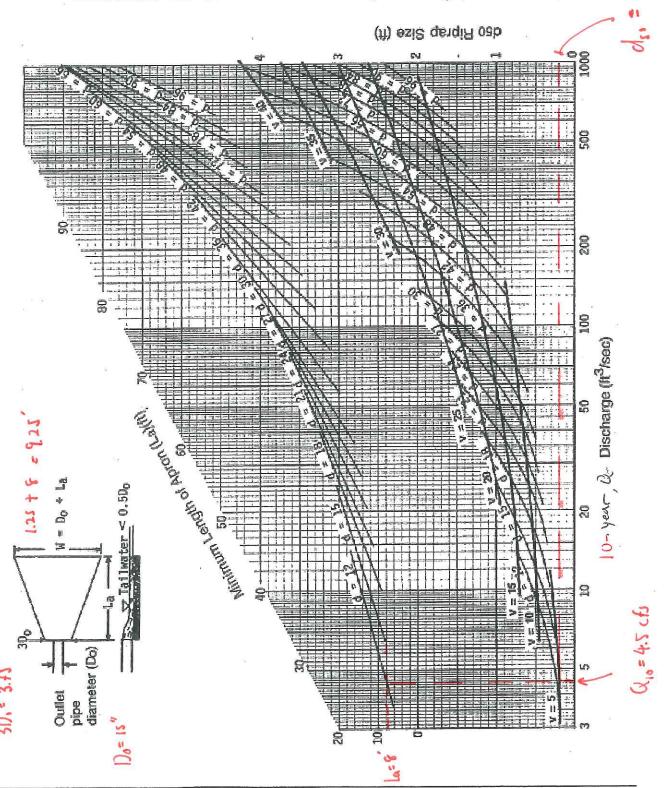
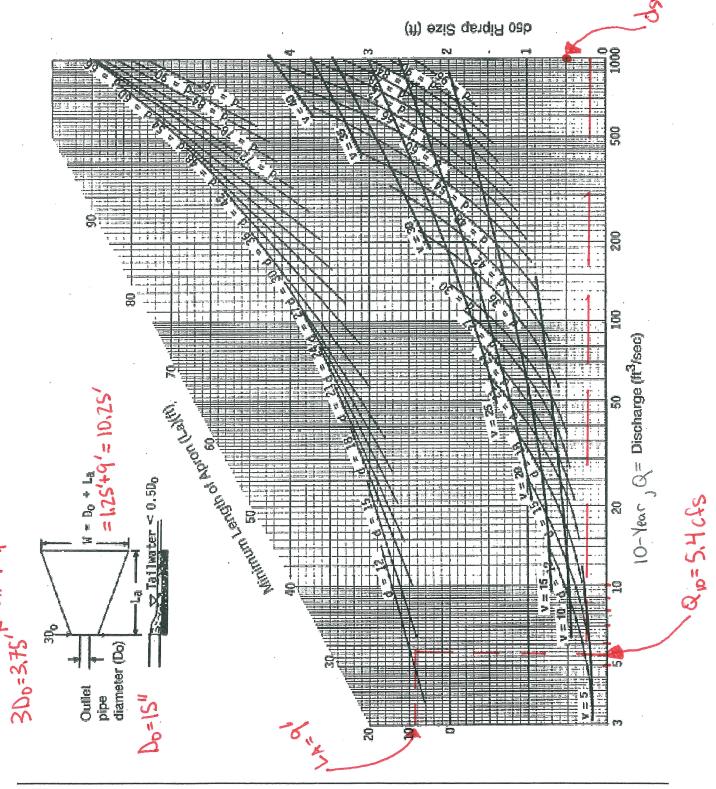




Figure 5B.12

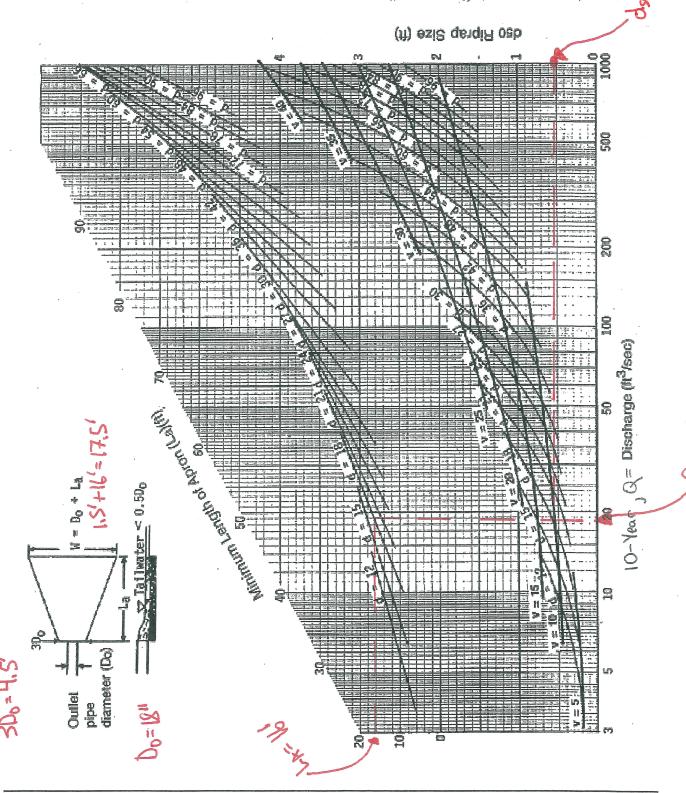

Temporary Sediment Basin (SB#Z)

Figure 5B.12

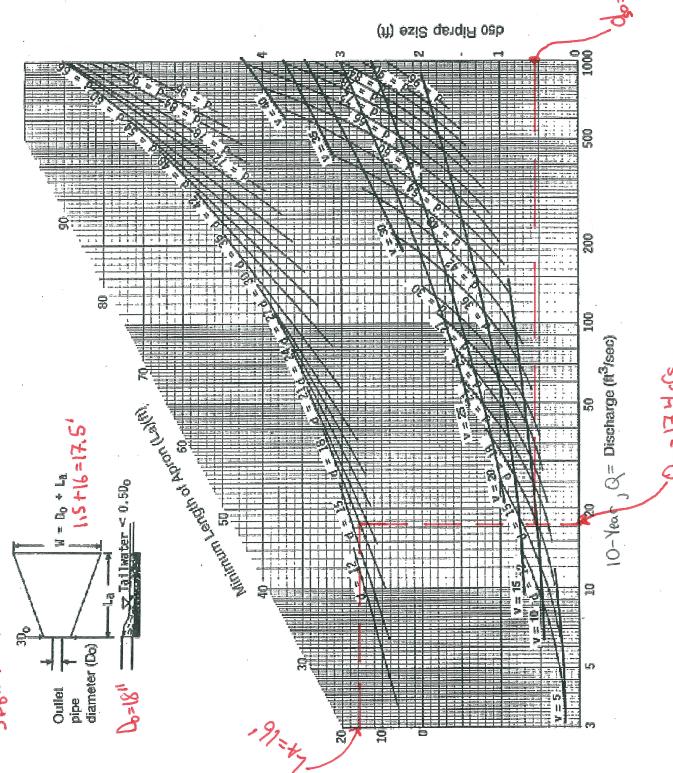
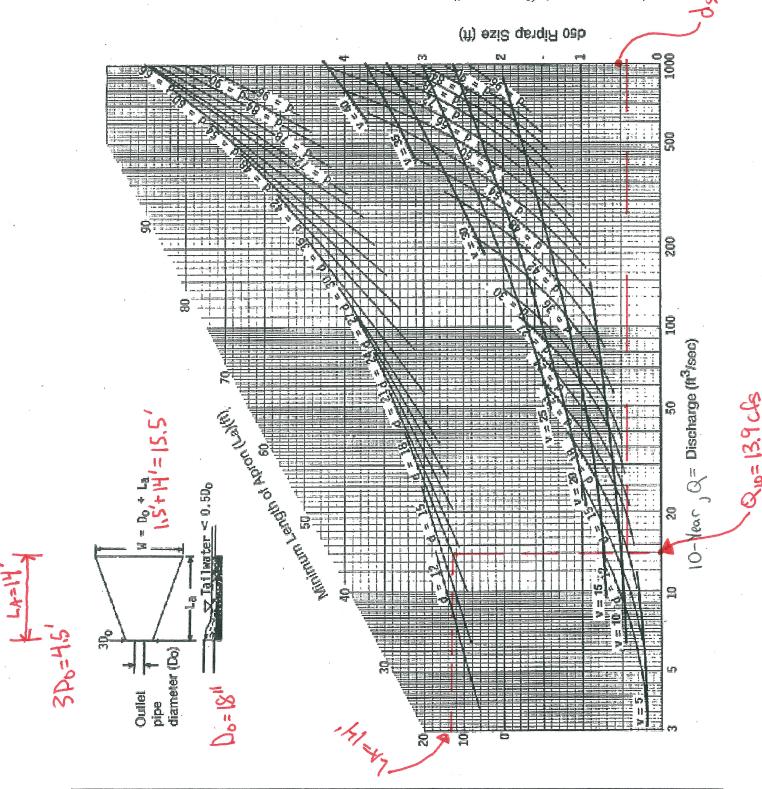
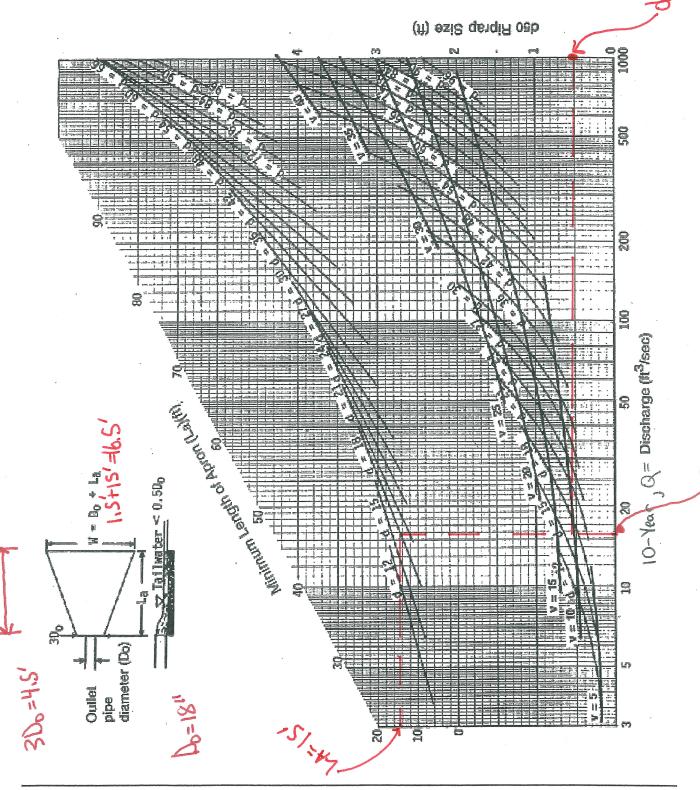

Temporary Sediment Basin (SB#3)

Figure 5B.12

Temporary Sediment Basin (SB#4)

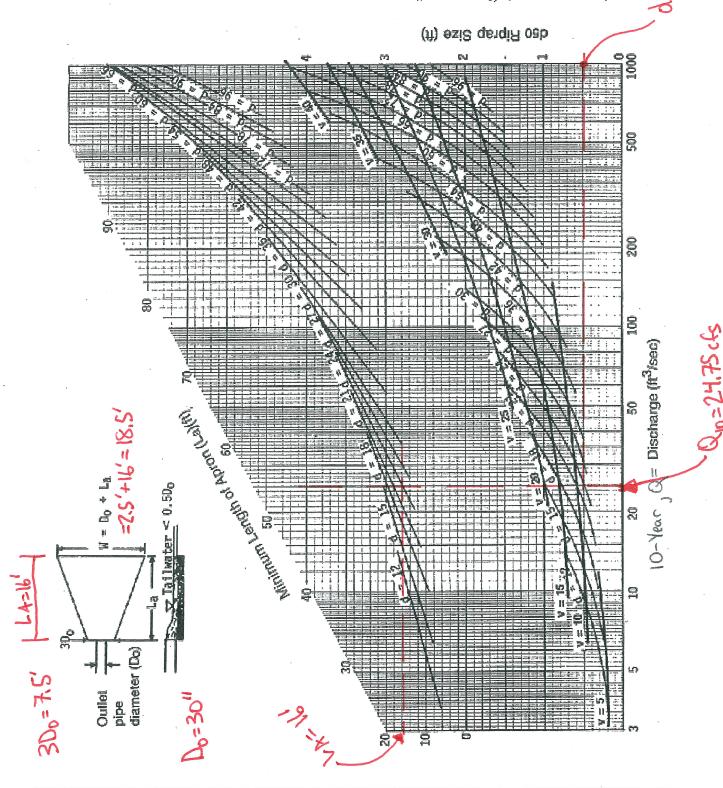

Figure 5B.12

Temporary Sediment Basin (SB#5)

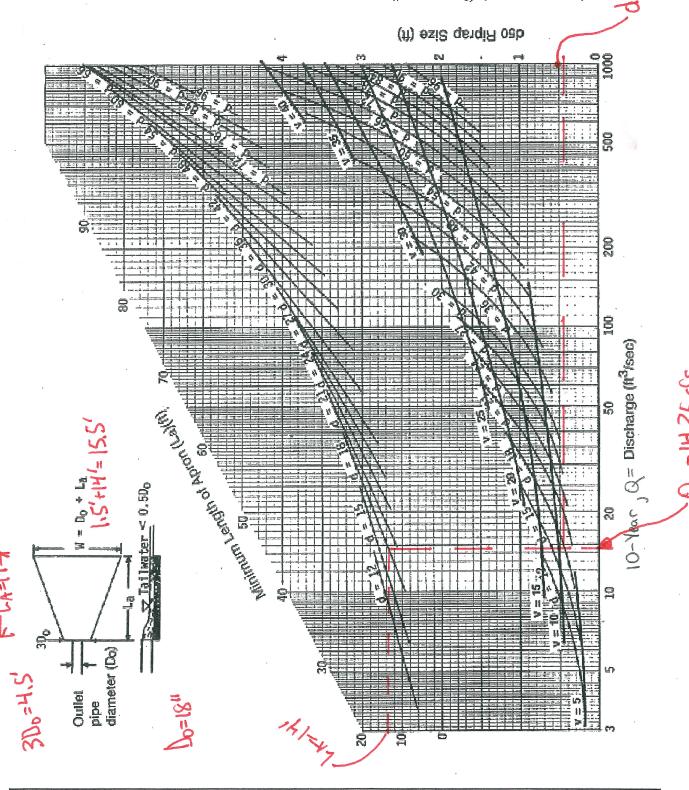

Figure 5B.12
Outlet Protection Design—Minimum Tailwater Condition
(Design of Outlet Protection from a Round Pipe Flowing Full,

Minimum Tailwater Condition: $T_w < 0.5D_o$) (USDA - NRCS)

Temporary Sediment Basin (SB#6)


Figure 5B.12

Temporary Sediment Basin (SB#7)


Figure 5B.12
Outlet Protection Design—Minimum Tailwater Condition
(Design of Outlet Protection from a Round Pipe Flowing Full,

Minimum Tailwater Condition: $T_w < 0.5D_o$) (USDA - NRCS)

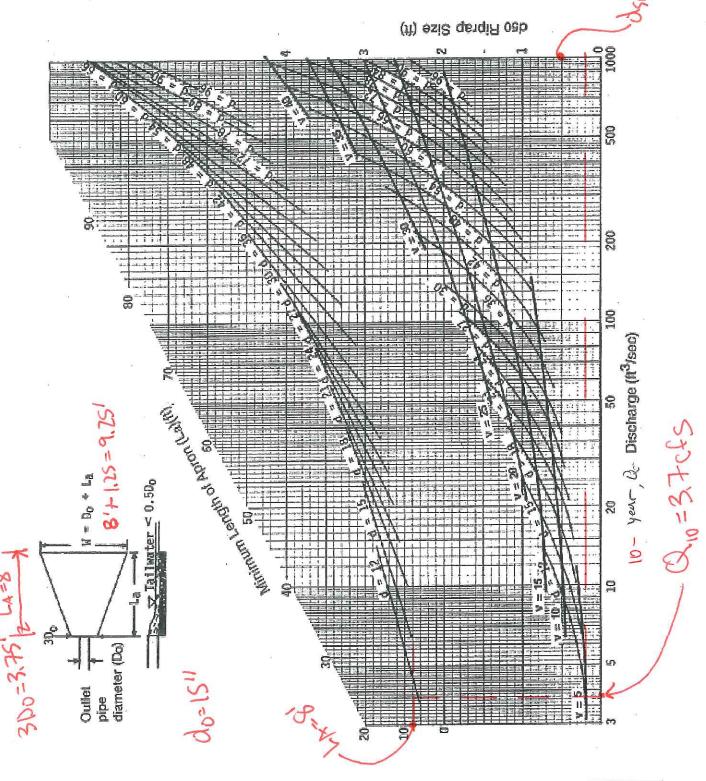
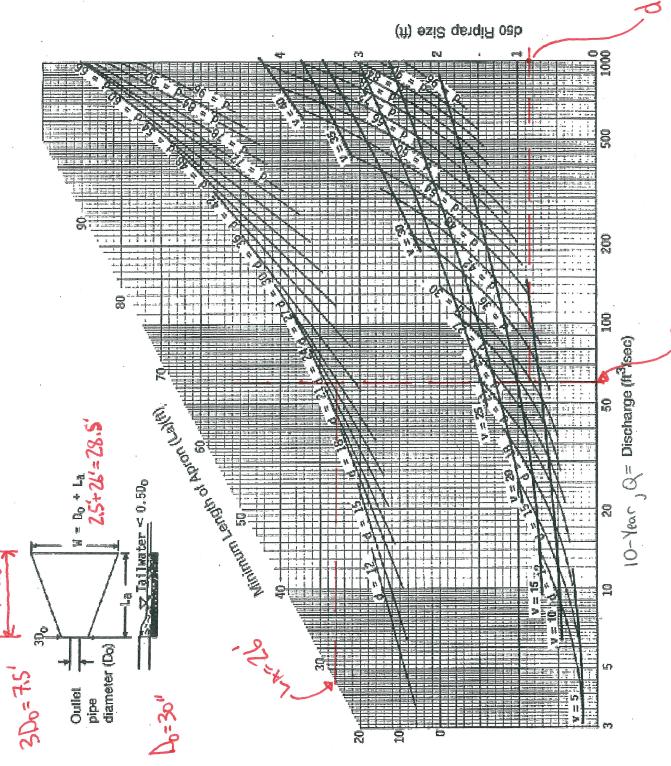
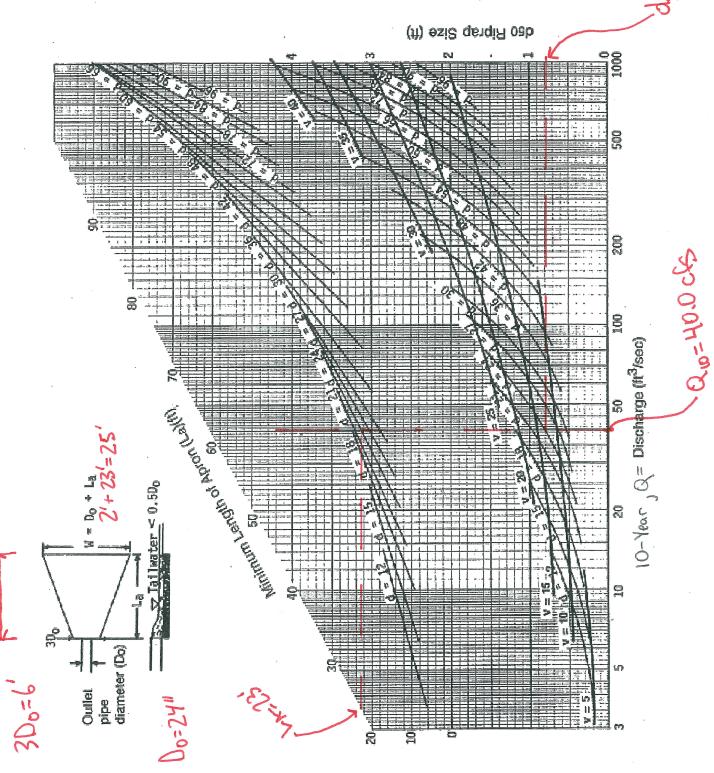

Temporary Sediment Basin (SB#8)

Figure 5B.12

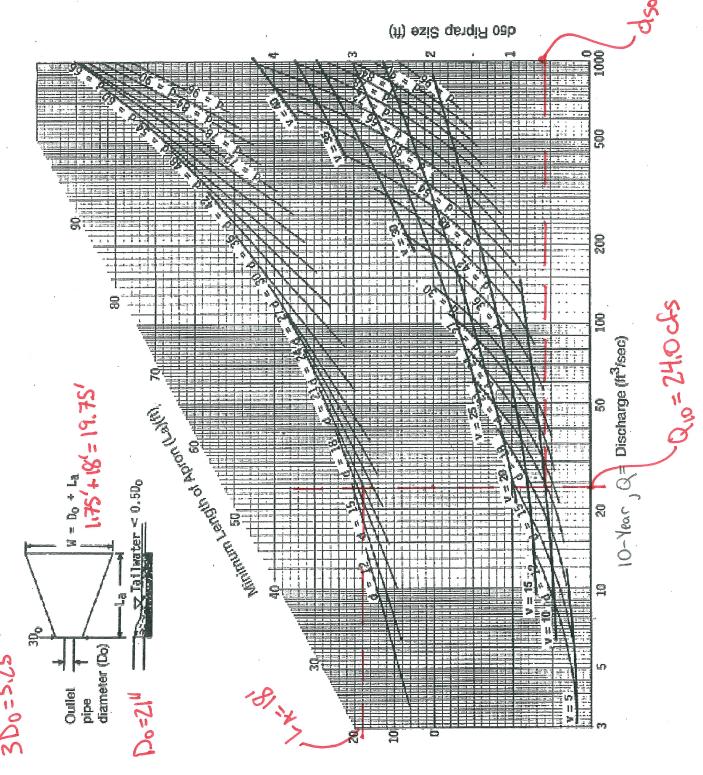


Temporary Sediment Basin (SB#8A)

Figure 5B.12

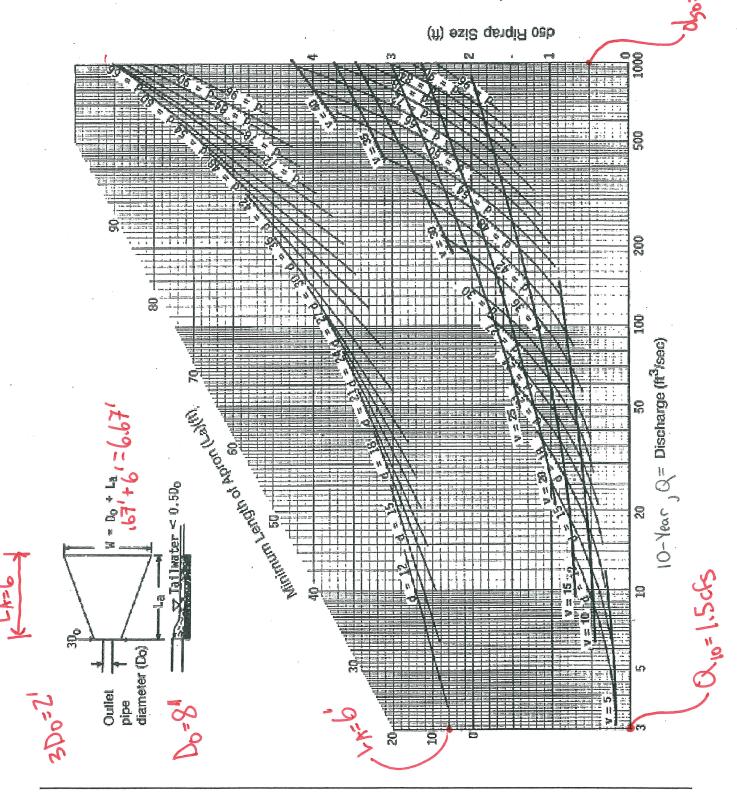


Temporary Sediment Basin (SB#9) Figure 5B.12



Temporary Sediment Basin (SB#10)

Figure 5B.12



Temporary Sediment Basin (SB#11) Figure 5B.12

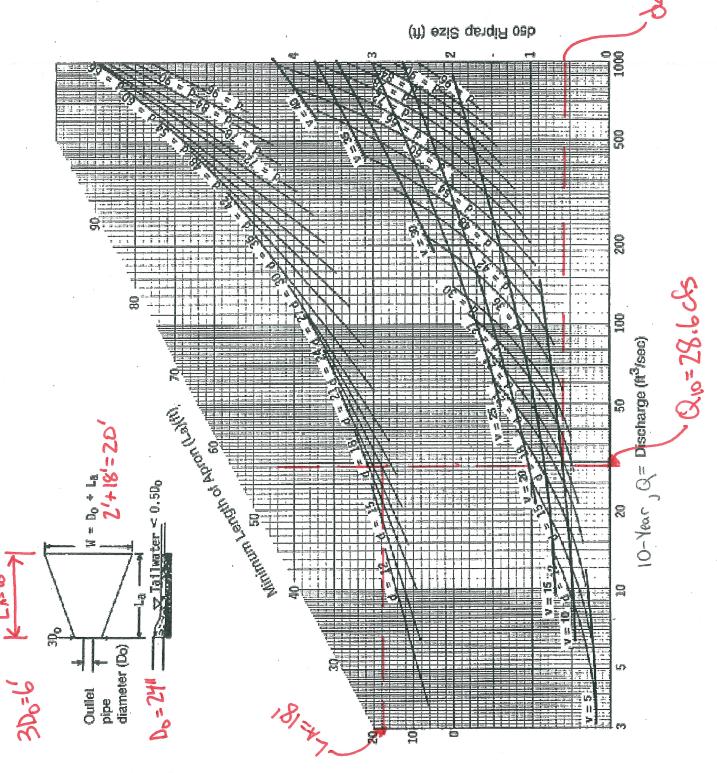

Temporary Sediment Basin (SB #12)

Figure 5B.12

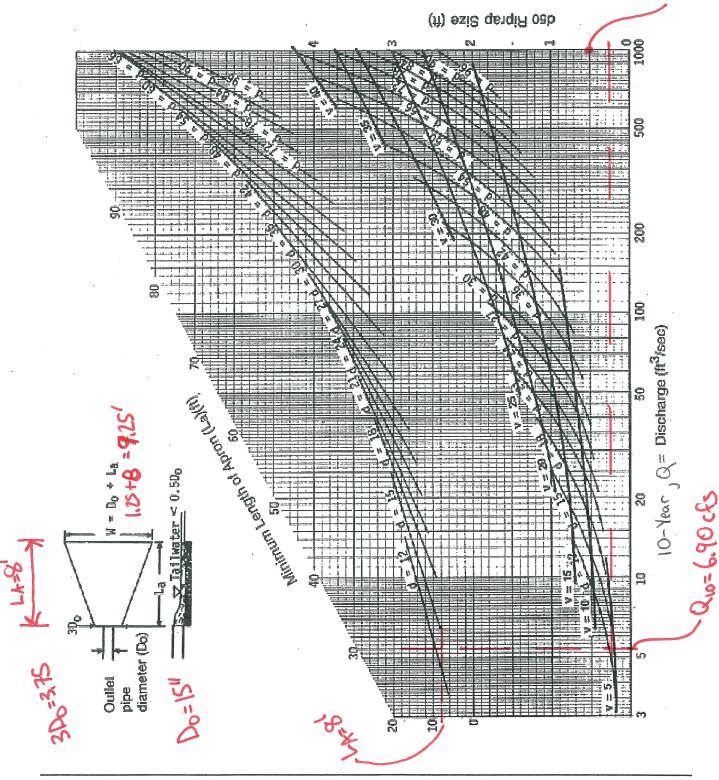

Temporary Sediment Basin (SB#13)

Figure 5B.12

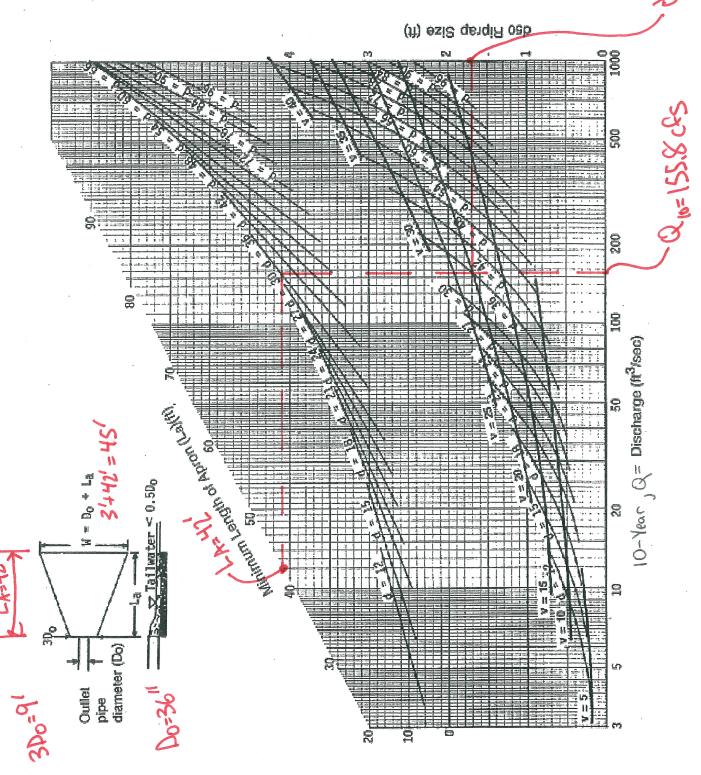

Temporary Sediment Basin (SB#14)

Figure 5B.12

Temporary Sediment Basin (SB#15)

Figure 5B.12

Riprap for SWM # 1 outlet

Figure 5B.12

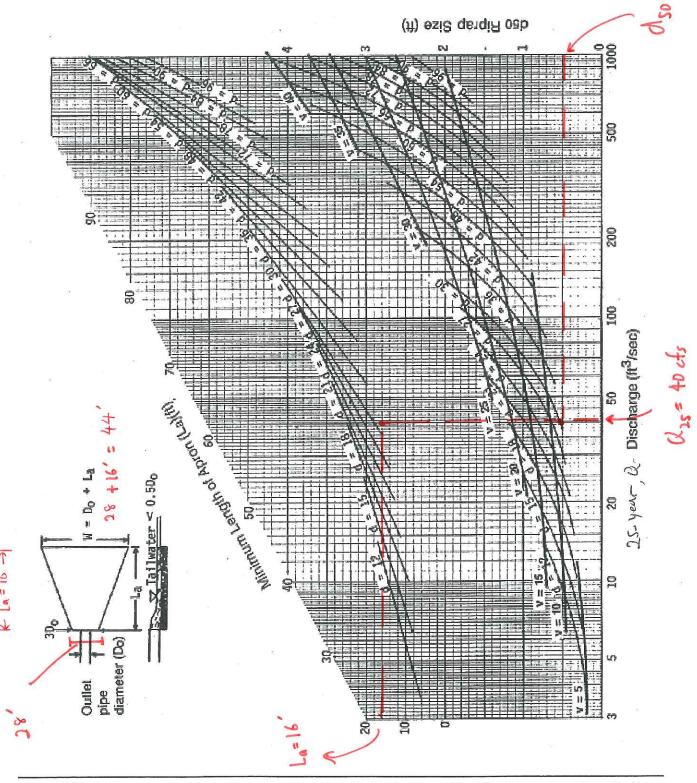


Figure 5B.12

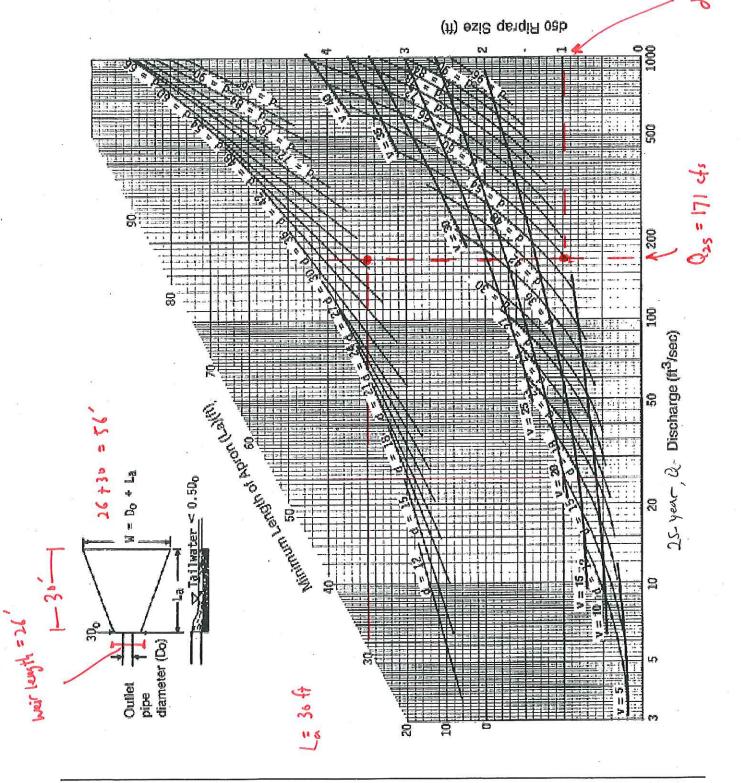
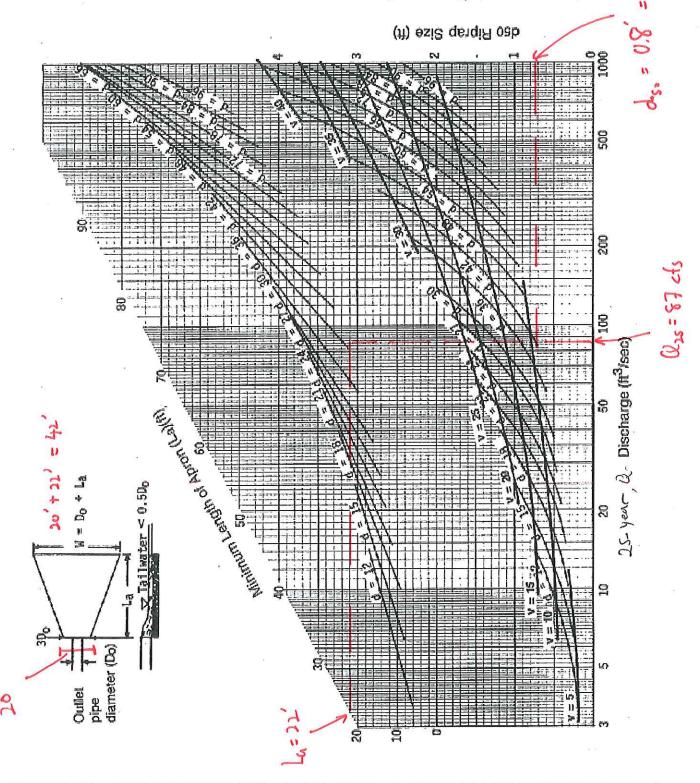
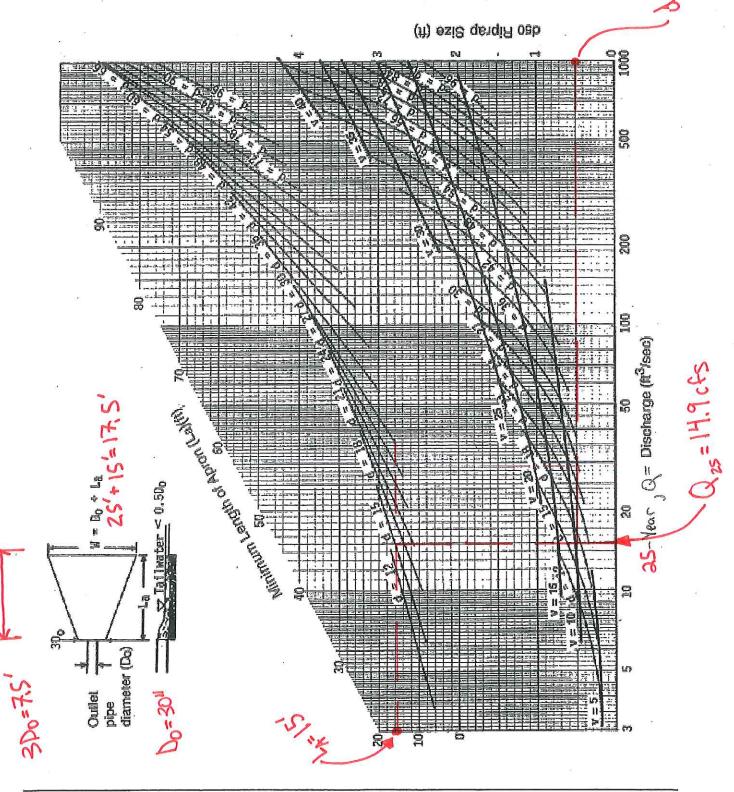




Figure 5B.12

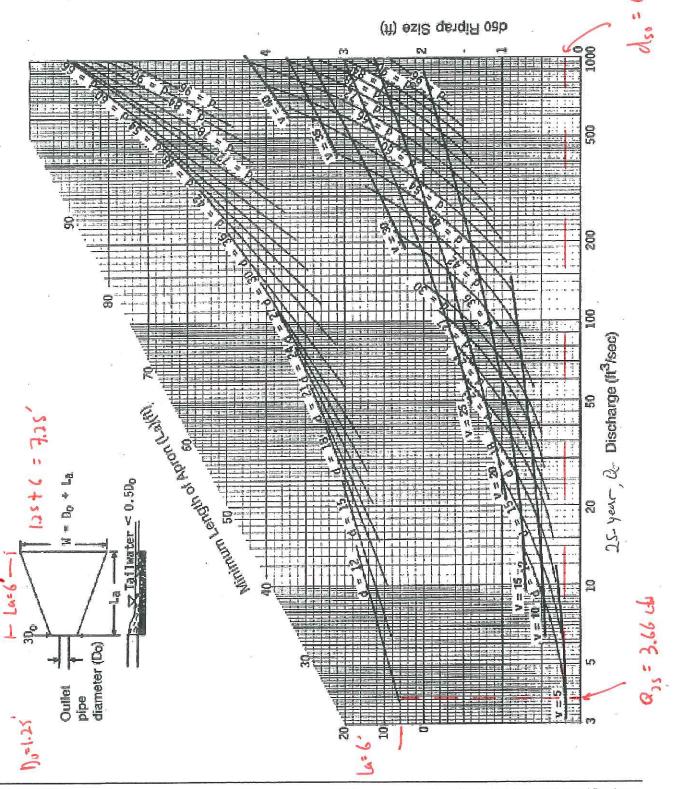

Riprap for SWM#7 outlet

Figure 5B.12

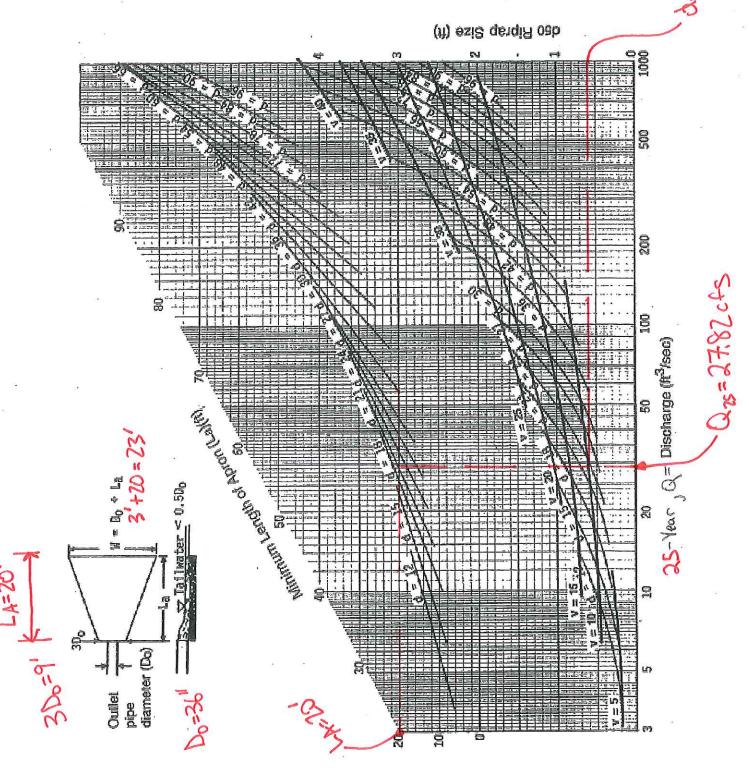

Riprap for SWM 7A (Overlook) / FES 966

Figure 5B.12

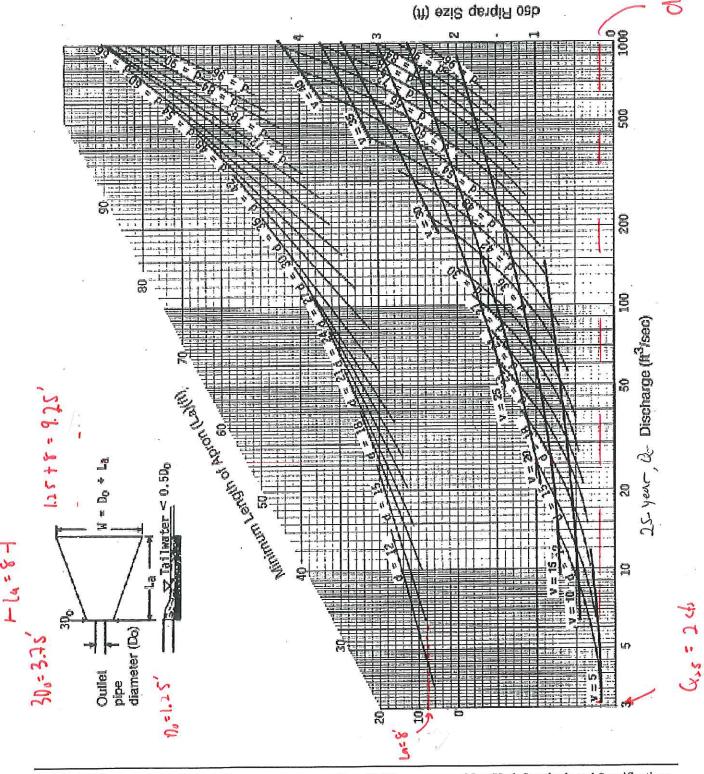
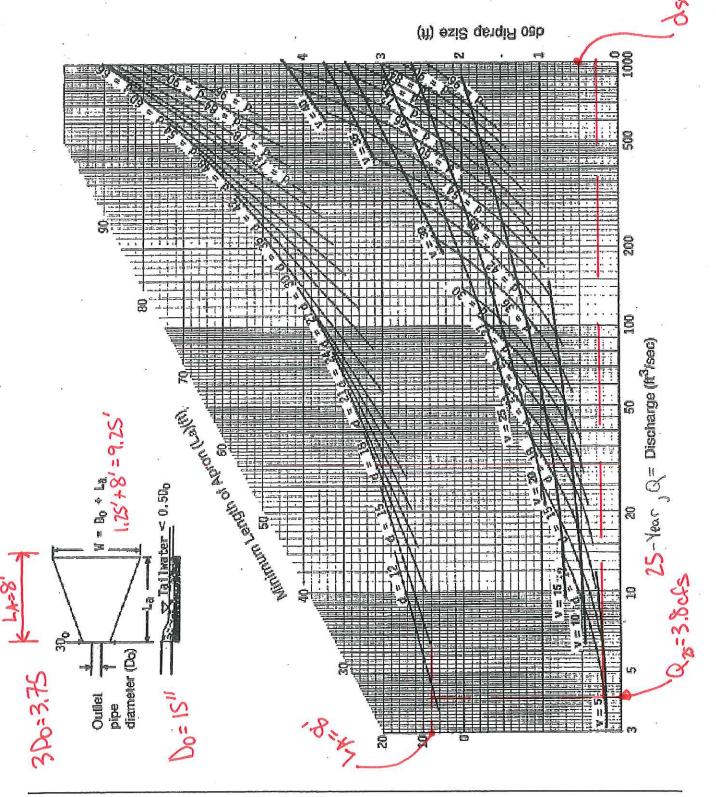

Riprap for SWM #8 Outlet

Figure 5B.12


Riprap for SUM # 10 outlet

 $\label{eq:figure 5B.12} Figure 5B.12 \\ Outlet Protection Design—Minimum Tailwater Condition \\ (Design of Outlet Protection from a Round Pipe Flowing Full, \\ \underline{Minimum Tailwater Condition: T_w < 0.5D_o)} \ (USDA - NRCS)$

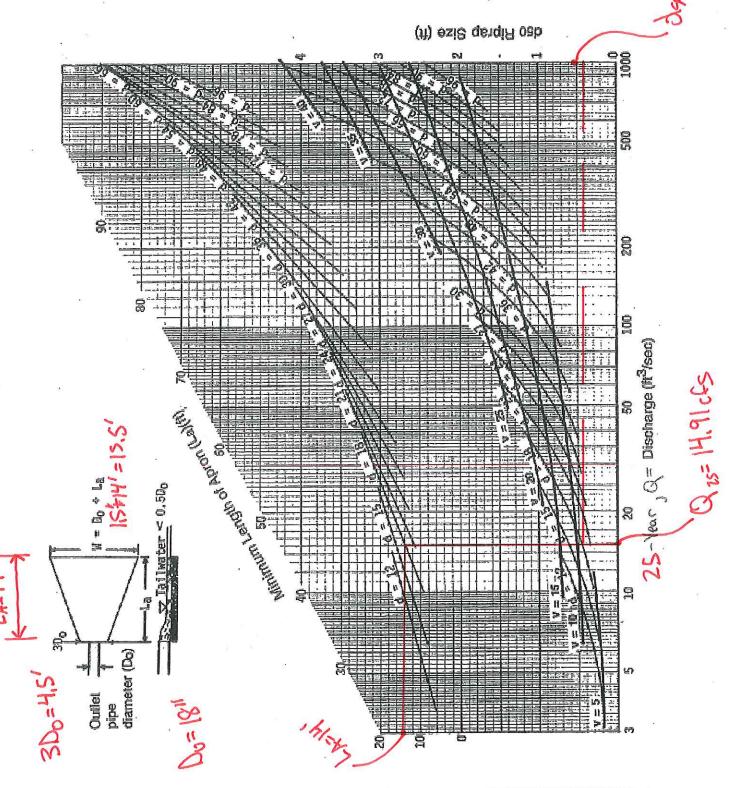

Riprap for SWM #12 Outlet

Figure 5B.12

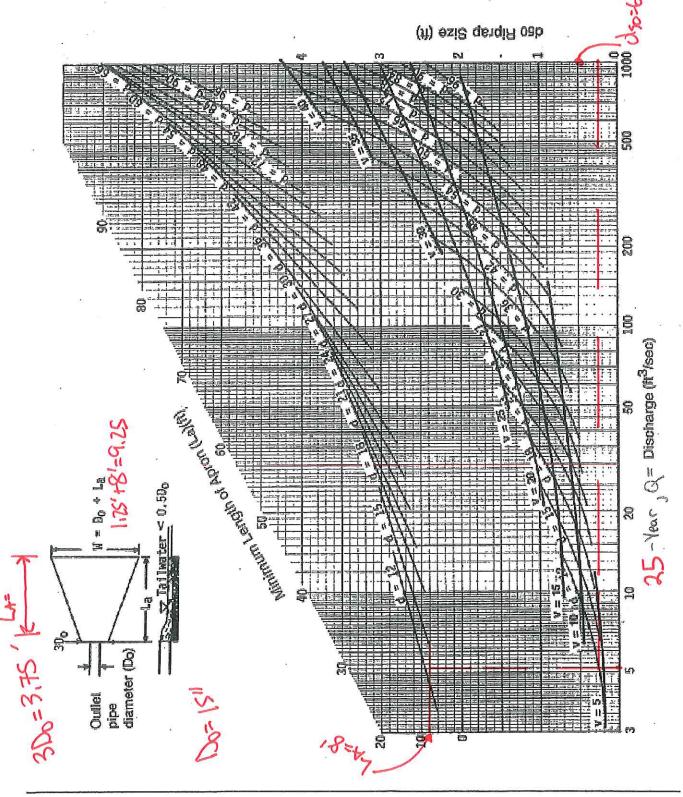

Riprap for SWM# 13 Outlet

Figure 5B.12

Riprap for SWM#15 Outlet

Figure 5B.12

